Skip to main content
Log in

Selective Attachment of Polyethylene Glycol to Hemerythrin for Potential Use in Blood Substitutes

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Due to its ability to reversibly bind O2, alongside a relatively low redox reactivity and a limited cytotoxicity, the oxygen-carrying protein hemerythrin has been considered as an alternative to hemoglobin in preparing blood substitutes. In order to increase the hydrodynamic volume and lower antigenicity, two site-directed variants, H82C and K92C, were engineered that contained a single cysteine residue on the surface of each hemerythrin octamer for the specific attachment of polyethylene glycol (PEG). A sulfhydryl-reactive PEGylation reagent with a 51.9 Å spacer arm was used for selective cysteine derivatization. The mutants were characterized by UV-vis spectroscopy, size-exclusion chromatography, oxygen affinity, and autooxidation rate measurements. The H82C variant showed altered oligomeric behavior compared to the wild-type and was unstable in the met form. The PEGylated K92C variant is reasonably stable, displays an oxygen affinity similar to that of the wild-type, and shows an increased rate of autoxidation; the latter disadvantage may be counteracted by further chemical modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GndCl/β-ME:

a mixture of 6 M guanidine hydrochloride and 0.24 M β-mercaptoethanol

Hr:

hemerythrin

Hb:

hemoglobin

MW:

molecular weight

PBS:

phosphate buffered saline (137 mM NaCl, 2.7 mM KCl, 12 mM NaH2PO4, pH 7.4)

PEG:

polyethylene glycol

MM(PEG)12 :

sulfhydryl-reactive methyl-PEG-maleimide

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

TCEP:

Tris (2-carboxyethyl) phosphine hydrochloride

Tris/NaCl:

20 mM Tris-HCl, 150 mM NaCl, pH 7.4 buffer

TMS:

(Methyl-PEG12)3-PEG4-Nhydroxysuccinimide ester

References

  1. Tsuchida E, Sou K, Nakagawa A et al (2009) Artificial Oxygen Carriers, Hemoglobin vesicles and Albumin-Hemes, based on Bioconjugate Chemistry. Bioconjug Chem 20:1419–1440. https://doi.org/10.1021/bc800431d

    Article  CAS  PubMed  Google Scholar 

  2. Jean G, Riess (2001) Oxygen carriers (“Blood Substitutes”) - Raison d’Etre, Chemistry, and some Physiology Blut ist ein ganz besondrer Saft. Chem Rev 101:2797–2920. https://doi.org/10.1021/CR970143C

    Article  Google Scholar 

  3. Wallis JP (2005) Nitric oxide and blood: a review. Transfus Med 15:1–11. https://doi.org/10.1111/j.1365-3148.2005.00542.x

    Article  CAS  PubMed  Google Scholar 

  4. Reeder BJ, Svistunenko DA, Cooper CE, Wilson MT (2004) The radical and redox chemistry of myoglobin and hemoglobin: from in vitro studies to human pathology. Antioxid Redox Signal 6:954–966. https://doi.org/10.1089/ars.2004.6.954

    Article  CAS  PubMed  Google Scholar 

  5. Herold S (1999) Kinetic and spectroscopic characterization of an intermediate peroxynitrite complex in the nitrogen monoxide induced oxidation of oxyhemoglobin. FEBS Lett 439:85–88. https://doi.org/10.1016/S0014-5793(98)81345-8

    Article  Google Scholar 

  6. Herold S, Exner M, Nauser T (2001) Kinetic and mechanistic studies of the NO*-mediated oxidation of oxymyoglobin and oxyhemoglobin. Biochemistry 40:3385–3395. https://doi.org/10.1021/bi002407m

    Article  CAS  PubMed  Google Scholar 

  7. Olson JS, Foley EW, Rogge C et al (2004) NO scavenging and the hypertensive effect of hemoglobin-based blood substitutes. Free Radic Biol Med 36:685–697. https://doi.org/10.1016/j.freeradbiomed.2003.11.030

    Article  CAS  PubMed  Google Scholar 

  8. Cooper CE, Silaghi-Dumitrescu R, Rukengwa M et al (2008) Peroxidase activity of hemoglobin towards ascorbate and urate: a synergistic protective strategy against toxicity of hemoglobin-based oxygen carriers (HBOC). Biochim Biophys Acta 1784:1415–1420. https://doi.org/10.1016/j.bbapap.2008.03.019

    Article  CAS  PubMed  Google Scholar 

  9. Buehler PW, Alayash AI (2004) Toxicities of hemoglobin solutions: in search of in-vitro and in-vivo model systems. Transfusion 44:1516–1530. https://doi.org/10.1111/j.1537-2995.2004.04081.x

    Article  CAS  PubMed  Google Scholar 

  10. Alayash AI (2004) Oxygen therapeutics: can we tame haemoglobin? Nat Rev Drug Discov 3:152–159. https://doi.org/10.1038/nrd1307

    Article  CAS  PubMed  Google Scholar 

  11. Sakai H (2017) Overview of potential clinical applications of Hemoglobin vesicles (HbV) as Artificial Red cells, evidenced by Preclinical Studies of the Academic Research Consortium. J Funct Biomaterials 8:10. https://doi.org/10.3390/jfb8010010

    Article  CAS  Google Scholar 

  12. Gupta A, Sen (2017) 2017 Military Supplement. SHOCK 1. https://doi.org/10.1097/SHK.0000000000001009

  13. Wang Q, Zhang R, Lu M et al (2017) Bioinspired Polydopamine-Coated Hemoglobin as potential oxygen carrier with antioxidant Properties. Biomacromolecules 18:1333–1341. https://doi.org/10.1021/acs.biomac.7b00077

    Article  CAS  PubMed  Google Scholar 

  14. Mot AC, Roman A, Lupan I et al (2010) Towards the development of hemerythrin-based blood substitute. Protein J 29:387–393. https://doi.org/10.1007/s10930-010-9264-2

    Article  CAS  PubMed  Google Scholar 

  15. Toma VA, Farcas ADAD, Roman I et al (2017) In vivo evaluation of hemerythrin-based oxygen carriers: similarities with hemoglobin-based counterparts. Int J Biol Macromol 107:1422–1427. https://doi.org/10.1016/j.ijbiomac.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  16. de Waal DJ, Wilkins RG (1976) Kinetics of the hemerythrin-oxygen interaction. J Biol Chem 251:2339–2343. https://doi.org/10.1016/S0021-9258(17)33592-5

    Article  PubMed  Google Scholar 

  17. Kurtz DM (1999) Oxygen-carrying proteins: three solutions to a common problem. Essays Biochem 34:85–100. https://doi.org/10.1042/bse0340085

    Article  CAS  PubMed  Google Scholar 

  18. Bradić Z, Conrad R, Wilkins RG (1977) Conversion of oxy- into methemerythrin in the presence of anions. J Biol Chem 252:6069–6075

    Article  PubMed  Google Scholar 

  19. Farmer CS, Kurtz DM, Phillips RS et al (2000) A leucine Residue “Gates” Solvent but not O 2 Access to the binding Pocket of Phascolopsis gouldii Hemerythrin. J Biol Chem 275:17043–17050. https://doi.org/10.1074/jbc.M001289200

    Article  CAS  PubMed  Google Scholar 

  20. Eike JH, Palmer AF (2004) Effect of Cl- and H + on the oxygen binding properties of glutaraldehyde-polymerized bovine hemoglobin-based blood substitutes. Biotechnol Prog 20:1543–1549. https://doi.org/10.1021/bp049872l

    Article  CAS  PubMed  Google Scholar 

  21. Rogers MS, Ryan BB, Cashon RE, Alayash AI (1995) Effects of polymerization on the oxygen carrying and redox properties of diaspirin cross-linked hemoglobin. Biochim Biophys Acta 1248:135–142. https://doi.org/10.1016/0167-4838(95)00017-O

    Article  PubMed  Google Scholar 

  22. Alayash AI, Summers AG, Wood F, Jia Y (2001) Effects of Glutaraldehyde polymerization on Oxygen Transport and Redox Properties of bovine hemoglobin. Arch Biochem Biophys 391:225–234. https://doi.org/10.1006/ABBI.2001.2426

    Article  CAS  PubMed  Google Scholar 

  23. Deac F, Iacob B, Fischer-Fodor E et al (2011) Derivatization of haemoglobin with periodate-generated reticulation agents: evaluation of oxidative reactivity for potential blood substitutes. J BioChem 149:75–82. https://doi.org/10.1093/jb/mvq123

    Article  CAS  PubMed  Google Scholar 

  24. Iacob B, Deac F, Cioloboc D et al (2011) Hemoglobin-albumin crosslinked Copolymers: reduced prooxidant reactivity. Artif Cells Blood Substit Biotechnol 39:293–297. https://doi.org/10.3109/10731199.2011.563362

    Article  CAS  Google Scholar 

  25. Scurtu F, Zolog O, Iacob B, Silaghi-Dumitrescu R (2014) Hemoglobin-albumin cross-linking with disuccinimidyl suberate (DSS) and/or glutaraldehyde for blood substitutes. Artif Cells Nanomed Biotechnol 42:13–17. https://doi.org/10.3109/21691401.2012.762652

    Article  CAS  PubMed  Google Scholar 

  26. Zolog O, Mot A, Deac F et al (2011) A New Polyethyleneglycol-Derivatized Hemoglobin Derivative with decreased Oxygen Affinity and Limited Toxicity. Protein J 30:27–31. https://doi.org/10.1007/s10930-010-9298-5

    Article  CAS  PubMed  Google Scholar 

  27. Hathazi D, Mot AC, Vaida A et al (2014) Oxidative protection of hemoglobin and hemerythrin by cross-linking with a nonheme iron peroxidase: potentially improved oxygen carriers for use in blood substitutes. Biomacromolecules 15:1920–1927. https://doi.org/10.1021/bm5004256

    Article  CAS  PubMed  Google Scholar 

  28. Arkosi M, Scurtu F, Vulpoi A et al (2017) Copolymerization of recombinant Phascolopsis gouldii hemerythrin with human serum albumin for use in blood substitutes. Artif Cells Nanomed Biotechnol 45:218–223. https://doi.org/10.1080/21691401.2016.1269118

    Article  CAS  PubMed  Google Scholar 

  29. Fischer-Fodor E, Mot A, Deac F et al (2011) Towards hemerythrin-based blood substitutes: comparative performance to hemoglobin on human leukocytes and umbilical vein endothelial cells. J Biosci 36:215–221. https://doi.org/10.1007/s12038-011-9066-5

    Article  CAS  PubMed  Google Scholar 

  30. Chavez MD, Schrimsher JL, Morar AS (2006) PEGylation of proteins: a Structural Approach. BioPharm Int 19:04–01

    Google Scholar 

  31. Farmer CS, Kurtz DM Jr, Liu ZJ et al (2001) The crystal structures of Phascolopsis gouldii wild type and L98Y methemerythrins: structural and functional alterations of the O2 binding pocket. J Biol Inorg Chem 6:418–429. https://doi.org/10.1007/s007750100218

    Article  CAS  PubMed  Google Scholar 

  32. Carrascoza F, Branzanic AM, Silaghi-Dumitrescu R (2021) The dynamics of hemerythrin and hemerythrin derivatives. Studia Univ Babes-Bolyai. ChemiaLXVI (4), 397–404. https://doi.org/10.24193/subbchem.2021.4.29

  33. Faivre B, Menu P, Labrude P, Vigneron C (1998) Hemoglobin Autooxidation/Oxidation mechanisms and Methemoglobin Prevention or reduction processes in the bloodstream - literature review and outline of Autooxidation reaction. Artif Cells Blood Substit Immobil Biotechnol 26:17–26. https://doi.org/10.3109/10731199809118943

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Drs. Francisco Carrascoza (BBU) and Donald M. Kurtz, Jr. (University of Texas at San Antonio, U.S.A.) are thanked for helpful discussions.

Funding

Funding from the Romanian Ministry of Education and Research (project PN-III-P4-ID-PCCF-2016-0142) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

MKA, ACM, IL, MGGT performed the experimental work. MKA and ACM prepared the Figures and Table. ACM and RSD wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Radu Silaghi-Dumitrescu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkosi, MK., Mot, A.C., Lupan, I. et al. Selective Attachment of Polyethylene Glycol to Hemerythrin for Potential Use in Blood Substitutes. Protein J 42, 374–382 (2023). https://doi.org/10.1007/s10930-023-10118-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10118-4

Keywords

Navigation