Skip to main content
Log in

Oxidant Potential of Krunidon In Vitro and In Vivo

  • PHARMACOLOGY AND TOXICOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effect of Fe2+ ions in polymerized hemoglobin (Krunidon blood substitute) and in molecular hemoglobin (Sigma) on OH radical initiation in the Fenton system. It was found that polymerized hemoglobin, as a component of Krunidon preparation, in contrast to hemoglobin tetramer, did not intensify OH radical generation. The oxidant potential of Krunidon was evaluated in vivo by measuring malondialdehyde level in dog blood plasma after repeated intravenous administration (5 days in a dose of 114 mg/kg) as a biomarker. Administration of the preparation did not significantly increased malondialdehyde content on days 1 and 4 after exposure and did not affect total protein content in blood plasma. Our findings suggest that polymerized hemoglobin in the Krunidon preparation exhibits no pro-oxidant activity and can be used as the basis for the development of non-oxygenic forms of blood substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhiburt EB, Shestakov EA. Hemopure — hemoglobin-based oxygen carrier. Vestn. Nats. Med.-Khir. Tsentra im. N. I. Pirogova. 2012;7(2):74-81. Russian.

    Google Scholar 

  2. Ivannik BP, Riabchenko NI, Dzikovskaia LA, Khorokhorina VA, Riabchenko VI, Sin’kova RV, Grosheva IP, Degtiareva EV. Comparative efficiency of injurious action of radiation and stress on thymus and lipid peroxidation. Radiats. Biol. Radioekol. 2000;40(6):656-658. Russian.

    CAS  Google Scholar 

  3. Men’shchikova EB, Zenkov NK, Lankin VS, Bondar’ IA, Trufakin VA. Oxidative stress. Pathological conditions and diseases. Novosibirsk, 2008. Russian.

  4. Goncharova AJ, Podgorodnichenko VK, Roziev RA, Khomichenok VV, Tsyb AF. Patent RU No. 2340354. Blood substitute with function of oxygen transfer. Bull. No. 34. Published December 10, 2008.

  5. Ryabchenko NI, Ivannik BP, Ryabchenko VI, Dzikovskaya LA. The effect of ionizing radiation and administration of iron ions and their chelate complexes on oxidative status of the blood serum in rats. Radiats. Biol. Radioekol. 2011;51(2):229-232. Russian.

    CAS  Google Scholar 

  6. Selivanov EA, Pshenkina NN, Murzina EV, Sofronov GA, Khanevich MD, Sarychev VA. Current development and introduction of hemoglobin-based blood substitutes. Med. Akad. Zh. 2011;11(2):49-60. Russian.

    Google Scholar 

  7. Buehler PW, Baek JH, Lisk C, Connor I, Sullivan T, Kominsky D, Majka S, Stenmark KR, Nozik-Grayck E, Bonaventura J, Irwin DC. Free hemoglobin induction of pulmonary vascular disease: evidence for an inflammatory mechanism. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012;303(4):L312-L326.

    Article  CAS  Google Scholar 

  8. Deuel JW, Vallelian F, Schaer CA, Puglia M, Buehler PW, Schaer DJ. Different target specificities of haptoglobin and hemopexin define a sequential protection system against vascular hemoglobin toxicity. Free Radic. Biol. Med. 2015;89:931-943.

  9. Gutteridge JM. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 1995;41(12(2):1819-1828.

  10. Hess JR. Review of modified hemoglobin research at Letterman: attempts to delinеate the toxicity of cell-free tetrameric hemoglobin. Artif. Cells Blood Substit. Immobil. Biotechnol. 1995;23(3):277-289.

    Article  CAS  Google Scholar 

  11. Himmelfarb J, McMonagle E. Albumin is the major plasma protein target of oxidant stress in uremia. Kidney Int. 2001;60(1):358-363.

    Article  CAS  Google Scholar 

  12. Jeney V, Eaton JW, Balla G, Balla J. Natural history of the bruise: formation, elimination, and biological effects of oxidized hemoglobin. Oxid. Med. Cell. Longev. 2013;2013. ID 703571. doi: https://doi.org/10.1155/2013/703571.

  13. Kruszewski М. Labile iron pool: the main determinant of cellular response to oxidative stress. Mut. Res. 2003;531(1-2):81-92.

    Article  CAS  Google Scholar 

  14. López-Alarcón C, Denicola A. Evaluating the antioxidant capacity of natural products: a review on chemical and cellularbased assays. Anal. Chim. Acta. 2012;763:1-10.

    Article  Google Scholar 

  15. Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E. The antioxidant properties of serum albumin. FEBS Lett. 2008;582(13):1783-1787.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Dzikovskaya.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 166, No. 8, pp. 170-173, August, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzikovskaya, L.A., Erimbetov, K.T., Grosheva, I.P. et al. Oxidant Potential of Krunidon In Vitro and In Vivo. Bull Exp Biol Med 166, 213–216 (2018). https://doi.org/10.1007/s10517-018-4316-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4316-2

Key Words

Navigation