Skip to main content

Advertisement

Log in

Understanding the Necessity of Regulatory Protein Machinery in Heterologous Expression of Class-III Type of Ocins

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

To date, there have been no or just a few reports of successful cloning and expression to create biologically active ocins or bacteriocins. Cloning, expression, and production of class I ocins are problematic because of their structural arrangements, coordinated functions, size, and posttranslational modifications. Mass synthesis of these molecules is necessary for commercialization and to restrict the excessive use of conventional antibiotics, which encourages the development of antibiotic-resistant bacteria. In the case of class III ocins, there are no reports of obtaining biological active proteins to date. Being able to obtain biologically active proteins requires an understanding of mechanistic features due to their expanding importance and broad spectrum of activity. As a result, we intend to clone and express the class III type. The class I types that are devoid of posttranslational modifications were transformed into class III through fusion. Therefore, this construct resembles a class III type ocin. With the exception of Zoocin, expression of the proteins was found to be physiologically ineffective after cloning. But, few cell morphological changes such as elongation, aggregation, and the formation of terminal hyphae were observed. However, it was discovered that the target indicator had been altered to Vibrio spp. in a few. All the three ocins were subjected to in-silico structure prediction/analysis. Finally, we confirm the existence of unidentified additional intrinsic factors for successful expression to obtain biologically active protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22(8):1255. https://doi.org/10.3390/molecules22081255

  2. Simons A, Alhanout K, Duval RE (2020) Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 8(5):639. https://doi.org/10.3390/microorganisms8050639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tajbakhsh M, Karimi A, Fallah F, Akhavan MM (2017) Overview of ribosomal and non-ribosomal antimicrobial peptides produced by Gram positive bacteria. Cell Mol Biol (Noisy-le-Grand) 63(10):20–32. https://doi.org/10.14715/cmb/2017.63.10.4

  4. Ingham AB, Sproat KW, Tizard ML et al (2005) A versatile system for the expression of non-modified bacteriocins in Escherichia coli. J Appl Microbiol 98(3):676–683. https://doi.org/10.1111/j.1365-2672.2004.02502.x

    Article  CAS  PubMed  Google Scholar 

  5. Alvarez-Sieiro P, Montalban-Lopez M, Mu D et al (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100(7):2939–2951. https://doi.org/10.1007/s00253-016-7343-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yi L, Luo L, Lu X (2018) Efficient exploitation of multiple novel bacteriocins by combination of complete genome and peptidome. Front Microbiol 9:1567. https://doi.org/10.3389/fmicb.2018.01567

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kumaria R, Garsa AK, Rajput YS et al (2019) Bacteriocins: classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog 128:171–177. https://doi.org/10.1016/j.micpath.2019.01.002

    Article  CAS  Google Scholar 

  8. Abee T, Krockel L, Hill C (1995) Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol 28(2):169–185. https://doi.org/10.1016/0168-1605(95)00055-0

    Article  CAS  PubMed  Google Scholar 

  9. O’Connor PM, O’Shea EF, Cotter PD et al (2018) The potency of the broad spectrum bacteriocin, bactofencin A, against staphylococci is highly dependent on primary structure, N-terminal charge and disulphide formation. Sci Rep 8(1):1. https://www.researchgate.net/publication/326879573

  10. Xin J et al (2019) Heterologous expression and purification of BtCsPB, a Novel Cold-shock protein like bacteriocin from Bacillus thurungenesis BRC-ZYR2. World J Microbiol Biotech 35(2):1–5. https://doi.org/10.1007/s11274-019-2595-z

    Article  CAS  Google Scholar 

  11. Wibowo D, Zhao CX (2019) Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl Microbiol Biotechnol 103(2):659–671. https://doi.org/10.1007/s00253-018-9524-1

    Article  CAS  PubMed  Google Scholar 

  12. Gopal GJ, Kumar A (2013) Strategies for the production of recombinant protein in Escherichia coli. Protein J 32:419–425

    Article  CAS  PubMed  Google Scholar 

  13. Klocke M, Mundt K, Idler F et al (2005) Heterologous expression of enterocin A, a bacteriocin from Enterococcus faecium, fused to a cellulose-binding domain in Escherichia coli results in a functional protein with inhibitory activity against Listeria. Appl Microbiol Biotechnol 67(4):532–538. https://doi.org/10.1007/s00253-004-1838-5

    Article  CAS  PubMed  Google Scholar 

  14. Choyam S, Suresh PSN, Pandey R et al (2019) Ocins database: a database of bug-busters from Bifidobacterium, Lactobacillus, and Enterococcus. Access Microbiol 1:4

    Article  Google Scholar 

  15. Hammami R, Zouhir A, Le Lay C et al (2010) BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol 10:22

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mesa-Pereira B, Rea MC, Cotter PD et al (2018) Heterologous expression of bio-preservative bacteriocins with a view to low cost production. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01654

  17. Schreiber C, Muller H, Birrenbach O et al (2017) A high-throughput expression screening platform to optimize the production of antimicrobial peptides. Microb Cell Fact 16(1):29. https://doi.org/10.1186/s12934-017-0637-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gibbs GM, Davidson BE, Hillier AJ (2004) Novel expression system for large-scale production and purification of recombinant class IIa bacteriocins and its application to piscicolin 126. Appl Environ Microbiol 70(6):3292–3297. https://doi.org/10.1128/AEM.70.6.3292-3297.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Acuna L, Picariello G, Sesma F et al (2012) A new hybrid bacteriocin, Ent35-MccV, displays antimicrobial activity against pathogenic Gram-positive and Gram-negative bacteria. FEBS Open Bio 2:12–19. https://doi.org/10.1016/j.fob.2012.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sal-Man N, Oren Z, Shai Y (2002) Preassembly of membrane-active peptides is an important factor in their selectivity toward target cells. Biochemistry 41(39):11921–11930. https://doi.org/10.1021/bi0260482

    Article  CAS  PubMed  Google Scholar 

  21. Arai R, Ueda H, Kitayama A et al (2001) Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng 14(8):529–532. https://doi.org/10.1093/protein/14.8.529

    Article  CAS  PubMed  Google Scholar 

  22. Klein JS, Jiang S, Galimidi RP et al (2014) Design and characterization of structured protein linkers with differing flexibilities. Protein Eng Des Sel 27(10):325–330. https://doi.org/10.1093/protein/gzu043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reddy Chichili VP, Kumar V, Sivaraman J (2013) Linkers in the structural biology of protein–protein interactions. Protein Sci 22(2):153–167. https://doi.org/10.1002/pro.2206

    Article  CAS  PubMed  Google Scholar 

  24. He J, Eckert R, Pharm T et al (2007) Novel synthetic antimicrobial peptides against Streptococcus mutans. Antimicrob Agents Chemother 51(4):1351–1358. https://doi.org/10.1128/AAC.01270-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baltzar BK, Jorgenson MG (2017) Recombinant hybrid bacteriocins inhibit the growth of bacterial pathogens. PLoS Synth Biol 2017:1–10

  26. Maarten GK, Kemland GL, Anoz-Carbonell E et al (2017) A natural chimeric pseudomonas bacteriocin with novel pore-forming activity parasitizes the ferrichrome transporter. mBio 8(1):e01961-16. https://doi.org/10.1128/mBio.01961-16

  27. van Rosmalen M, Krom M, Merkx M (2017) Tuning the flexibility of glycine-serine linkers to allow rational design of multi domain proteins. Biochemistry 56(50):6565–6574. https://doi.org/10.1021/acs.biochem.7b00902

    Article  CAS  PubMed  Google Scholar 

  28. Tiwari SK, Sutyak Noll K, Cavera VL et al (2015) Improved antimicrobial activities of synthetic-hybrid bacteriocins designed from enterocin E50–52 and pediocin PA-1. Appl Environ Microbiol 81(5):1661–1667. https://doi.org/10.1128/AEM.03477-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Acuna L, Morero RD, Bellomio A (2010) Development of wide spectrum hybrid bacteriocins for food bio-preservation. Food Bioprocess Technol 4:1029–1049. https://doi.org/10.1007/s11947-010-0465-7

    Article  Google Scholar 

  30. Guo C, Huang Y, Zheng H et al (2012) Secretion and activity of antimicrobial peptide cecropin D expressed in Pichia pastoris. Exp Ther Med. https://doi.org/10.3892/etm.2012.719

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kageyama M, Kobayashi M, Sano Y (1996) Construction and characterization of pyocin–colicin chimeric proteins. J Bacteriol 178(1):103–110. https://doi.org/10.1128/jb.178.1.103-110.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Rosmalen M, Krom M, Merkx M (2017) Tuning the flexibility of glycine-serine linkers to allow rational design of multi-domain proteins. Biochemistry 56(50):6565–6574. https://doi.org/10.1021/acs.biochem.7b00902

    Article  CAS  PubMed  Google Scholar 

  33. Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65(10):1357–1369. https://doi.org/10.1016/j.addr.2012.09.039

    Article  CAS  PubMed  Google Scholar 

  34. Reddy Chichili VP, Kumar V, Sivaraman J (2013) Linkers in the structural biology of protein–protein interactions. Protein Sci 22(2):153–167. https://doi.org/10.1002/pro.2206

  35. Yi L, Luo L, Lü X (2018) Efficient exploitation of multiple novel bacteriocins by combination of complete genome and peptidome. Front Microbiol 9:1567. https://doi.org/10.3389/fmicb.2018.01567

    Article  PubMed  PubMed Central  Google Scholar 

  36. Valdés-Stauber N, Scherer S (1994) Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 60(10):3809–3814. https://doi.org/10.1128/aem.60.10.3809-3814.1994

    Article  PubMed  PubMed Central  Google Scholar 

  37. Torreblanca M, Meseguer I, Ventosa A (2008) Production of halocin is a practically universal feature of archaeal halophilic rods. Lett Appl Microbiol 19(4):201–205. https://doi.org/10.1111/j.1472-765X.1994.tb00943.x

    Article  Google Scholar 

  38. Mei SS, Li Y, Lu QH et al (2006) Cloning and analysis of genes in the halocin C8 gene cluster. Acta Microbiol Sinica 46(2):318–322

    CAS  Google Scholar 

  39. Simmonds RS, Simpson WJ, Tagg JR (1997) Cloning and sequence analysis of zooA, a Streptococcus zoo-epidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene 189(2):255–261. https://doi.org/10.1016/S0378-1119(96)00859-1

    Article  CAS  PubMed  Google Scholar 

  40. Horton RM, Hunt HD, Ho SN et al (1989) Engineering hybrid genes without the use of restriction enzymes—gene-splicing by overlap extension. Gene 77(1):61–68. https://doi.org/10.1016/0378-1119(89)90359-4

    Article  CAS  PubMed  Google Scholar 

  41. Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2(4):924–932. https://doi.org/10.1038/nprot.2007.132

    Article  CAS  PubMed  Google Scholar 

  42. Thornton JA (2016) Splicing by overlap extension PCR to obtain hybrid DNA products. Methods Mol Biol 1373:43–49. https://doi.org/10.1007/7651_2014_182

    Article  CAS  PubMed  Google Scholar 

  43. Ho SN, Hunt HD, Horton RM et al (1989) Site-directed mutagenesis by overlap extension using the polymerase chain-reaction. Gene 77(1):51–59. https://doi.org/10.1016/0378-1119(89)90358-2

    Article  CAS  PubMed  Google Scholar 

  44. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of E. coli with plasmids. Gene 96(1):23–28. https://doi.org/10.1016/0378-1119(90) (p. 90336)

  45. Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1(1):16–22. https://doi.org/10.1038/nprot.2006.4

    Article  CAS  PubMed  Google Scholar 

  46. Zheng W, Zhang C, Li Y (2021) Folding non-homology proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep Methods 1:100014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sitao Wu, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 35:3375–3382

    Article  Google Scholar 

  48. LeDuc RD, Fellers RT, Early BP, Thomas PM, Kelleher NL (2014) The C-score: a Bayesian framework to sharply improve proteo-form scoring in high-throughput top down proteomics. J Proteome Res 13(7)3231–3240. https://doi.org/10.1021/pr401277r

  49. Teich A, Lin HY, Andersson L (1998) Amplification of ColE1 related plasmids in recombinant cultures of E. coli after IPTG induction. J of Biotechnol 64:197–210

    Article  CAS  Google Scholar 

  50. Vind J, Sørenson MA, Rasmussen MD (1993) Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomes. Expression from reporter genes does not always reflect functional mRNA levels. J Mol Biol 231:678–688

    Article  CAS  PubMed  Google Scholar 

  51. Fakruddin M, Mazumdar RM, Mannan KSB (2013) Critical factors affecting the success of cloning, expression, and mass production of enzymes by recombinant E. coli. ISRN Biotechnol. https://doi.org/10.5402/2013/590587

  52. Miller Kurt W, Schamber R, Osmanagaoglu O (1998) Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity. Appl Env Microbiol 64(6):1997–2005

    Article  Google Scholar 

  53. Sara A, Jimenez JJ, Gutiez L, Feito J (2019) Cloning and expression of synthetic genes encoding native, hybrid- and bacteriocin derived chimeras from mature class IIa bacteriocins, by Pichia pastoris (syn. Komagataella spp). Food Res Int. https://doi.org/10.1016/j.foodres.2019.01.015

  54. Carrier MJ, Nugent ME, Tacon WCA, Primrose SB (1983) High expression of cloned genes in E. coli and its consequences. Trends Biotechnol 14:109-113

  55. Johnsen L, Fimland G, Nissen-Meyer J (2005) The C-terminal domain of pediocin-like antimicrobial peptides (class IIa bacteriocins) is involved in specific recognition of the C-terminal part of cognate immunity proteins and in determining the antimicrobial spectrum. J Bio Chem 280(10): 9243–9250

  56. Fimland G, Blingsmo OR, Sletten K (1996) New biologically active hybrid bacteriocins constructed by combining regions from various pediocin-like bacteriocins: the C-terminal region is important for determining specificity. Appl Environ Microbiol 62(9):3313–3318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wiedmann I, Breukink E, Van Kraij C et al (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276(3):1772–1779. https://doi.org/10.1074/jbc.M006770200

    Article  Google Scholar 

  58. Morton JT, Freed SD, Lee SW et al (2015) A large-scale prediction of bacteriocin gene blocks suggests a wide functional spectrum for bacteriocins. BMC Bioinform. https://doi.org/10.1186/s12859-015-0792-9

Download references

Author information

Authors and Affiliations

Authors

Contributions

SC: Generated data, RK: Planned, framed, analysed and wrote the manuscript.

Corresponding author

Correspondence to Rajagopal Kammara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 123 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choyam, S., Kammara, R. Understanding the Necessity of Regulatory Protein Machinery in Heterologous Expression of Class-III Type of Ocins. Protein J 42, 239–252 (2023). https://doi.org/10.1007/s10930-023-10106-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10106-8

Keywords

Navigation