Skip to main content

Advertisement

Log in

A Novel Glucose-6-Phosphate Isomerase Exists in Chicken Breast Meat: A Selenium-Containing Enzyme that Should Be Re-recognized Through New Eyes

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Glucose-6-phosphate isomerase (GPI) is a highly conserved glycolytic enzyme in nature, and less information was available for GPI from hens. In this study a newly discovered selenocysteine (Sec)-containing GPI in common chicken breast meat was first isolated, purified and identified. Data about LC–MS/MS, FTIR and Se species analyses show that the molecular weight of the enzyme is 62,091 Da and only one Sec is inserted at the 403rd position in the highly conserved primary domain SIS_PGI with sugar conversion function. The enzyme shows excellent activity against hydroxyl radicals as vitamin C (Vc) in vitro. It is deduced that the Sec-containing GPI in the chicken meat may depend on Sec in its molecular structure to resist reactive oxygen species (ROS) stress produced by the accompanying biochemical reactions in cells, to protect its stability and maintain its efficient function that catalyzes the conversion of glucose-6-phosphate to fructose-6-phosphate in the critical glycolytic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haller JF, Krawczyk SA, Gostilovitch L, Corkey BE, Zoeller RA (2011) Glucose-6-phosphate isomerase deficiency results in mTOR activation, failed translocation of lipin 1α to the nucleus and hypersensitivity to glucose: implications for the inherited glycolytic disease. Biochim Biophys Acta BBA 1812:1393–1402. https://doi.org/10.1016/j.bbadis.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  2. Yamamoto H, Miwa H, Kunishima N (2008) Crystal structure of glucose-6-phosphate isomerase from Thermus thermophilus HB8 showing a snapshot of active dimeric state. J Mol Biol 382:747–762. https://doi.org/10.1016/j.jmb.2008.07.041

    Article  CAS  PubMed  Google Scholar 

  3. Lin H-Y, Kao Y-H, Chen S-T, Meng M (2009) Effects of inherited mutations on catalytic activity and structural stability of human glucose-6-phosphate isomerase expressed in Escherichia coli. Biochim Biophys Acta 1794:315–323. https://doi.org/10.1016/j.bbapap.2008.11.004

    Article  CAS  PubMed  Google Scholar 

  4. Gurney ME (1988) Mouse glucose-6-phosphate isomerase and neuroleukin have identical 3′ sequences. Nature 332(6163):455–457. https://doi.org/10.1038/332455a0

    Article  Google Scholar 

  5. Chaput M, Claes V, Portetelle D, Cludts I, Cravador A, Burny A, Gras H, Tartar A (1988) The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature 332:454–455. https://doi.org/10.1038/332454a0

    Article  CAS  PubMed  Google Scholar 

  6. Achari A, Marshall SE, Muirhead H, Palmieri RH, Noltmann EA (1981) Glucose-6-phosphate isomerase. Philos Trans R Soc Lond B 293:145–157. https://doi.org/10.1098/rstb.1981.0068

    Article  CAS  Google Scholar 

  7. Sun L-C, Zhou L-G, Du C-H, Cai Q-F, Hara K, Su W-J, Cao M-J (2009) Glucose-6-phosphate isomerase is an endogenous inhibitor to myofibril-bound serine proteinase of crucian carp (Carassius auratus). J Agric Food Chem 57:5549–5555. https://doi.org/10.1021/jf9004669

    Article  CAS  PubMed  Google Scholar 

  8. Tsuboi KK, Fukunaga K, Chervenka CH (1971) Phosphoglucose isomerase from human erythrocyte: preparation and properties. J Biol Chem 246:7586–7594. https://doi.org/10.1016/S0021-9258(19)45817-1

    Article  CAS  PubMed  Google Scholar 

  9. Gurney ME, Heinrich SP, Lee MR, Yin H-S (1986) Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurons. Science 234:566–574. https://doi.org/10.1126/science.3764429

    Article  CAS  PubMed  Google Scholar 

  10. Rengasamy S, Subramanian MR, Perumal V, Ganeshan S, Al KM, M., Al-Shwaiman H. A., Elgorban A. M., Syed A. and Thangaprakasam U., (2020) Purification and kinetic behavior of glucose isomerase from Streptomyces lividans RSU26. Saudi Journal of Biological Sciences 27:1117–1123. https://doi.org/10.1016/j.sjbs.2019.12.024

    Article  CAS  PubMed  Google Scholar 

  11. Kwon S, Ha HJ, Kang YJ, Sung JH, Hwang J, Lee MJ, Lee JH, Park HH (2021) Crystal structure of a novel putative sugar isomerase from the psychrophilic bacterium Paenibacillus sp. R4. Biochem Biophys Res Commun 585:48–54. https://doi.org/10.1016/j.bbrc.2021.11.026

    Article  CAS  PubMed  Google Scholar 

  12. Yoon R-Y, Yeom S-J, Park C-S, Oh D-K (2009) Substrate specificity of a glucose-6-phosphate isomerase from Pyrococcus furiosus for monosaccharides. Appl Microbiol Biotechnol 83:295–303. https://doi.org/10.1007/s00253-009-1859-1

    Article  CAS  PubMed  Google Scholar 

  13. Cech DL, Wang P-F, Holt MC, Assimon VA, Schaub JM, Holler TP, Woodard RW (2014) A novel glucose 6-phosphate isomerase from Listeria monocytogenes. Protein J 33:447–456. https://doi.org/10.1007/s10930-014-9577-7

    Article  CAS  PubMed  Google Scholar 

  14. Long C, Zhu G-Y, Sheng X-H, Xing K, Venema K, Wang X-G, Xiao L-F, Guo Y, Ni H-M, Zhu N-H, Qi X-L (2022) Dietary supplementation with selenomethionine enhances antioxidant capacity and selenoprotein gene expression in layer breeder roosters. Poultry Sci 101:102113. https://doi.org/10.1016/j.psj.2022.102113

    Article  CAS  Google Scholar 

  15. Zhang L, Zhang Y, Li S, Li C, Hu X, Li Z, Yue T, Hu Z (2023) Effect of the selenized yeast added in feed on selenium-containing proteins of albumins in egg yolk. Food Chem 402:124435. https://doi.org/10.1016/j.foodchem.2022.134435

    Article  CAS  Google Scholar 

  16. Guo Y, Ma M, Jiang F, Jiang W, Wang H, Du S-K (2020) Protein quality and antioxidant properties of soymilk derived from black soybean after in vitro simulated gastrointestinal digestion. Int J Food Sci Technol 55:720–728. https://doi.org/10.1111/ijfs.14335

    Article  CAS  Google Scholar 

  17. Dong Z, Lin Y, Wu H, Zhang M (2021) Selenium accumulation in protein fractions of Tenebrio molitor larvae and the antioxidant and immunoregulatory activity of protein hydrolysates. Food Chem 334:127475. https://doi.org/10.1016/j.foodchem.2020.127475

    Article  CAS  PubMed  Google Scholar 

  18. Gao Q, Liu Z-H, Wu J-L, Geng Y, Zhang Q, Tie M, Gu X-J, Tanokura M, Xue Y-L (2019) Foliar application is an effective method for incorporating selenium into peanut leaf proteins with antioxidant activities. Food Res Int 126:108617. https://doi.org/10.1016/j.foodres.2019.108617

    Article  CAS  PubMed  Google Scholar 

  19. Gourlay LJ, Sommaruga S, Nardini M, Sperandeo P, Dehò G, Polissi A, Bolognesi M (2010) Probing the active site of the sugar isomerase domain from E. coli arabinose-5-phosphate isomerase via X-ray crystallography. Protein Sci 19:2430–2439. https://doi.org/10.1002/pro.525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Meng M, Lin H-Y, Hsieh C-J, Chen Y-T (2001) Functions of the conserved anionic amino acids and those interacting with the substrate phosphate group of phosphoglucose isomerase. FEBS Lett 499:11–14. https://doi.org/10.1016/S0014-5793(01)02507-8

    Article  CAS  PubMed  Google Scholar 

  21. Dhanya SR, Nair SG, Satapathy J, Kumar NP (2019) Structural and spectroscopic characterization of bismuth-ferrites. AIP Conf Proc. https://doi.org/10.1063/1.5131604

    Article  Google Scholar 

  22. Meng Y, Zhang Y, Jia N, Qiao H, Zhu M, Meng Q, Lu Q, Zu Y (2018) Synthesis and evaluation of a novel water-soluble high Se-enriched Astragalus polysaccharide nanoparticles. Int J Biol Macromol 118:1438–1448. https://doi.org/10.1016/j.ijbiomac.2018.06.153

    Article  CAS  PubMed  Google Scholar 

  23. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta BBA 1767:1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004

    Article  CAS  PubMed  Google Scholar 

  24. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39:549. https://doi.org/10.1111/j.1745-7270.2007.00320.x

    Article  CAS  PubMed  Google Scholar 

  25. Yang S, Zhang Q, Yang H, Shi H, Dong A, Wang L, Yu S (2022) Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. Int J Biol Macromol 206:175–187. https://doi.org/10.1016/j.ijbiomac.2022.02.104

    Article  CAS  PubMed  Google Scholar 

  26. Arnér ESJ (2010) Selenoproteins—what unique properties can arise with selenocysteine in place of cysteine? Exp Cell Res 316:1296–1303. https://doi.org/10.1016/j.yexcr.2010.02.032

    Article  CAS  PubMed  Google Scholar 

  27. Jacob C, Giles GI, Giles NM, Sies H (2003) Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int Ed 42:4742–4758. https://doi.org/10.1002/anie.200300573

    Article  CAS  Google Scholar 

  28. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science (New York, NY) 179:588–590. https://doi.org/10.1126/science.179.4073.588

    Article  CAS  Google Scholar 

  29. Shen Q, Zhang B, Xu R, Wang Y, Ding X, Li P (2010) Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis 01. Anaerobe 16:380–386. https://doi.org/10.1016/j.anaerobe.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  30. Treml J, Šmejkal K (2016) Flavonoids as potent scavengers of hydroxyl radicals. Compr Rev Food Sci Food Saf 15:720–738. https://doi.org/10.1111/1541-4337.12204

    Article  CAS  PubMed  Google Scholar 

  31. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science (New York, NY) 300:1439–1443. https://doi.org/10.1126/science.1083516

    Article  CAS  Google Scholar 

  32. Kryukov GV, Gladyshev VN (2004) The prokaryotic selenoproteome. EMBO Rep 5:538–543. https://doi.org/10.1038/sj.embor.7400126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lobanov AV, Fomenko DE, Zhang Y, Sengupta A, Hatfield DL, Gladyshev VN (2007) Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol 8:R198. https://doi.org/10.1186/gb-2007-8-9-r198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lobanov AV, Hatfield DL, Gladyshev VN (2009) Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta 1790:1424–1428. https://doi.org/10.1016/j.bbagen.2009.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng Q, Arnér ES (2017) Selenocysteine insertion at a predefined UAG codon in a release factor 1 (RF1)-depleted Escherichia coli host strain bypasses species barriers in recombinant selenoprotein translation. J Biol Chem 292:5476–5487. https://doi.org/10.1074/jbc.M117.776310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gladyshev VN, Arnér ES, Berry MJ, Brigelius-Flohé R, Bruford EA, Burk RF, Carlson BA, Castellano S, Chavatte L, Conrad M, Copeland PR, Diamond AM, Driscoll DM, Ferreiro A, Flohé L, Green FR, Guigó R, Handy DE, Hatfield DL, Hesketh J, Hoffmann PR, Holmgren A, Hondal RJ, Howard MT, Huang K, Kim H-Y, Kim IY, Köhrle J, Krol A, Kryukov GV, Lee BJ, Lee BC, Lei XG, Liu Q, Lescure A, Lobanov AV, Loscalzo J, Maiorino M, Mariotti M, Sandeep PK, Rayman MP, Rozovsky S, Salinas G, Schmidt EE, Schomburg L, Schweizer U, Simonović M, Sunde RA, Tsuji PA, Tweedie S, Ursini F, Whanger PD, Zhang Y (2016) Selenoprotein Gene Nomenclature*. J Biol Chem 291:24036–24040. https://doi.org/10.1074/jbc.M116.756155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang X-P, Wang S-Q, Wang W, Xu Y, Xu Z, Tang J-Y, Sun H-Y, Wang Z-J, Zhang W (2015) Enolase1 (ENO1) and glucose-6-phosphate isomerase (GPI) are good markers to predict human sperm freezability. Cryobiology 71:141–145. https://doi.org/10.1016/j.cryobiol.2015.04.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The paper was supported by Shaanxi Province Key R&D Program (2021SF-387) and Yulin Science and Technology Plan Project (2019-132).

Author information

Authors and Affiliations

Authors

Contributions

Xin Hu and Chenxi Li: Conceptualization and Writing-Original Draft; Yuancheng Li and Yi Jin: Validation; Lulu Wei and Xinlei Wang: Formal analysis; Yanlong Xu: Resources; Zhongqiu Hu: Funding and Supervision.

Corresponding author

Correspondence to Zhongqiu Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Li, C., Li, Y. et al. A Novel Glucose-6-Phosphate Isomerase Exists in Chicken Breast Meat: A Selenium-Containing Enzyme that Should Be Re-recognized Through New Eyes. Protein J 42, 355–364 (2023). https://doi.org/10.1007/s10930-023-10105-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10105-9

Keywords

Navigation