Skip to main content
Log in

Enzyme Kinetics Features of the Representative Engineered Recombinants of Chondroitinase ABC I

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Chondroitinase ABC I (cABC I) from Proteus vulgaris is an important enzyme in medicinal biotechnology due to its ability to help axon regeneration after spinal cord injury. Its practical application involves solving several problems at the molecular and cellular levels. Structurally, most residues at the C-terminal domain of cABC I are arranged as organized strands, and only a small fraction of residues have helical conformation. The structural and functional features of modified residues on two specific helix fragments have previously been reported. The single mutant M889K has been combined with L679S and L679D mutants to make enzyme variants containing simultaneously modified helix. Here, the pH stability and temperature-based analysis of the transition state structure for the catalysis reaction were investigated. We found that double mutant L679D/M889K is the better choice to use in physiological conditions due to its higher pH stability at physiological pH as well as its different optimum temperature as compared with the (wild-type) WT protein. According to Arrhenius’s analysis, the values of the Gibbs free energy of the transition state (∆G#) are not changed upon mutation. However, the relative contribution and absolute values of the enthalpy and entropy change to the total value of ∆G#, varied between the WT and mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ward OP, Moo-Young M (1988) Thermostable enzymes. Biotechnol Adv 6:39–69. https://doi.org/10.1016/0734-9750(88)90573-3

    Article  CAS  PubMed  Google Scholar 

  2. Basheer SM, Chellappan S (2017) Enzyme engineering. In: Sugathan S, Pradeep NAS (eds) Bioresources and bioprocess in biotechnology. Springer, Singapore, pp 151–158

    Chapter  Google Scholar 

  3. Niehaus F, Niehaus F, Bertoldo C et al (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729. https://doi.org/10.1007/s002530051456

    Article  CAS  PubMed  Google Scholar 

  4. Platis D, Labrou N (2008) Chemical and genetic engineering strategies to improve the potency of pharmaceutical proteins and enzymes. Curr Med Chem 15:1940–1955. https://doi.org/10.2174/092986708785132924

    Article  CAS  PubMed  Google Scholar 

  5. Yuan YM, He C (2013) The glial scar in spinal cord injury and repair. Neurosci Bull 29:421–435. https://doi.org/10.1007/s12264-013-1358-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wilhelmsson U, Bushong EA, Price DL et al (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci USA 103:17513–17518. https://doi.org/10.1073/pnas.0602841103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. F M, A O, (2004) Proteoglycans and injury of the central nervous system. Congenit Anom 44:181–186

    Article  Google Scholar 

  8. Rhodes KE, Fawcett JW (2004) Chondroitin sulphate proteoglycans: Preventing plasticity or protecting the CNS? J Anat 204:33–48. https://doi.org/10.1111/j.1469-7580.2004.00261.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156. https://doi.org/10.1038/nrn1326

    Article  CAS  PubMed  Google Scholar 

  10. Shirdel A, Khalifeh K (2022) Chondroitinase ABC I as a novel candidate for reducing damage in spinal cord injury. In: Rajendram R, Preedy V, Martin C (eds) Diagnosis and treatment of spinal cord injury. Academic Press, pp 325–335

    Chapter  Google Scholar 

  11. Prabhakar V, Capila I, Bosques CJ et al (2005) Chondroitinase ABC I from Proteus vulgaris: cloning, recombinant expression and active site identification. Biochem J 386:103–112. https://doi.org/10.1042/BJ20041222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang H, Zhang L, Wang Y et al (2021) Engineering a thermostable chondroitinase for production of specifically distributed low-molecular-weight chondroitin sulfate. Biotechnol J. https://doi.org/10.1002/biot.202000321

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cantarel BI, Coutinho PM, Rancurel C et al (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238. https://doi.org/10.1093/nar/gkn663

    Article  CAS  Google Scholar 

  14. Huang W, Lunin VV, Li Y et al (2003) Crystal structure of Proteus vulgaris chondroitin sulfate ABC lyase I at 1.9 Å resolution. J Mol Biol 328:623–634. https://doi.org/10.1016/S0022-2836(03)00345-0

    Article  CAS  PubMed  Google Scholar 

  15. Hettiaratchi MH, O’Meara MJ, Teal CJ et al (2019) Local delivery of stabilized chondroitinase ABC degrades chondroitin sulfate proteoglycans in stroke-injured rat brains. J Control Release 297:14–25. https://doi.org/10.1016/j.jconrel.2019.01.033

    Article  CAS  PubMed  Google Scholar 

  16. García-Alías G, Lin R, Akrimi SF et al (2008) Therapeutic time window for the application of chondroitinase ABC after spinal cord injury. Exp Neurol 210:331–338. https://doi.org/10.1016/j.expneurol.2007.11.002

    Article  CAS  PubMed  Google Scholar 

  17. Barritt AW, Davies M, Marchand F et al (2006) Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci 26:10856–10867. https://doi.org/10.1523/JNEUROSCI.2980-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao RR, Fawcett JW (2013) Combination treatment with chondroitinase ABC in spinal cord injury—breaking the barrier. Neurosci Bull 29:477–483. https://doi.org/10.1007/s12264-013-1359-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu HZ, Granger N, Balakrishna Pai S et al (2018) Therapeutic efficacy of microtube-embedded chondroitinase ABC in a canine clinical model of spinal cord injury. Brain 141:1017–1027. https://doi.org/10.1093/brain/awy007

    Article  PubMed  Google Scholar 

  20. Tester NJ, Plaas AH, Howland DR (2007) Effect of body temperature on chondroitinase ABC’s ability to cleave chondroitin sulfate glycosaminoglycans. J Neurosci Res 85:1110–1118. https://doi.org/10.1002/jnr.21199

    Article  CAS  PubMed  Google Scholar 

  21. Jamshidi N, Shirdel A, Pourahmadi M et al (2020) Bioinformatics and experimental studies on the structural roles of a surface-exposed α-helix at the C-terminal domain of Chondroitinase ABC I. Int J Biol Macromol 163:1572–1578. https://doi.org/10.1016/j.ijbiomac.2020.07.165

    Article  CAS  PubMed  Google Scholar 

  22. Chen Z, Li Y, Feng Y et al (2015) Enzyme activity enhancement of chondroitinase ABC I from Proteus vulgaris by site-directed mutagenesis. RSC Adv 5:76040–76047. https://doi.org/10.1039/c5ra15220h

    Article  CAS  Google Scholar 

  23. Naderi MS, Moghadam TT, Khajeh K, Ranjbar B (2018) Improving the stability of chondroitinase ABC I via interaction with gold nanorods. Int J Biol Macromol 107:297–304. https://doi.org/10.1016/j.ijbiomac.2017.08.167

    Article  CAS  PubMed  Google Scholar 

  24. Shirdel SA, Khalifeh K, Golestani A et al (2015) Critical role of a loop at C-terminal domain on the conformational stability and catalytic efficiency of chondroitinase ABC I. Mol Biotechnol 57:727–734. https://doi.org/10.1007/s12033-015-9864-3

    Article  CAS  Google Scholar 

  25. Shamsi M, Akram Shirdel S, Jafarian V et al (2016) Optimization of conformational stability and catalytic efficiency in chondroitinase ABC Ι by protein engineering methods. Eng Life Sci 16:690–696. https://doi.org/10.1002/elsc.201600034

    Article  CAS  Google Scholar 

  26. Moradi K, Shirdel SASA, Shamsi M et al (2017) Investigating the structural and functional features of representative recombinants of chondroitinase ABC I. Enzyme Microb Technol 107:64–71. https://doi.org/10.1016/j.enzmictec.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  27. Mohammadyari H, Shirdel SA, Jafarian V, Khalifeh K (2019) Designing and construction of novel variants of Chondroitinase ABC I to reduce aggregation rate. Arch Biochem Biophys 668:46–53. https://doi.org/10.1016/j.abb.2019.05.013

    Article  CAS  PubMed  Google Scholar 

  28. Shen M-Y, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524. https://doi.org/10.1110/ps.062416606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fisher CL, Pei GK (1997) Modification of a PCR-based site directed mutagenesis method. Biotechniques 23:570–574

    Article  CAS  PubMed  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  31. Eyring H (1935) The activated complex and the absolute rate of chemical reactions. Chem Rev 17:65–77. https://doi.org/10.1021/cr60056a006

    Article  CAS  Google Scholar 

  32. Hettiaratchi MH, O’Meara MJ, O’Meara TR et al (2020) Reengineering biocatalysts: computational redesign of chondroitinase ABC improves efficacy and stability. Sci Adv 6:1–9. https://doi.org/10.1126/sciadv.abc6378

    Article  CAS  Google Scholar 

  33. Rypniewski WR, Perrakis A, Vorgias CE, Wilson KS (1994) Evolutionary divergence and conservation of trypsin. Protein Eng Des Sel 7:57–64. https://doi.org/10.1093/protein/7.1.57

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the Tarbiat Modares University of Tehran for the technical support of the research. The authors have declared no conflict of interest. Dr. Khosro Khajeh and Dr. Abolfazl Golestani are acknowledged for their generous donation of bacterium.

Funding

This work was supported by the research council of the University of Zanjan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vahab Jafarian or Akram Shirdel.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that influence the data of the current work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10930_2023_10093_MOESM1_ESM.tif

Supplementary file1 (TIF 90 KB)Supplementary image 1. SDS-PAGE analysis of purified recombinant proteins. Lane 1, marker; lane2, WT; lane3, M889K; lane 4, M889L; lane 5, L679D/M889K; lane 6, L679S/M889K. The numbers provided on the left side of the image are the molecular weight of marker proteins in kDa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, K., Bayani, Z., Jafarian, V. et al. Enzyme Kinetics Features of the Representative Engineered Recombinants of Chondroitinase ABC I. Protein J 42, 55–63 (2023). https://doi.org/10.1007/s10930-023-10093-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10093-w

Keywords

Navigation