Skip to main content
Log in

Critical Role of a Loop at C-Terminal Domain on the Conformational Stability and Catalytic Efficiency of Chondroitinase ABC I

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

We used a combination of protein engineering and spectroscopic methods to investigate the effect of a long length loop on the conformational stability and activity of chondroitinase ABC I. This study involves manipulation of interactions around Asp689 as a key residue in the central region of the loop containing residues 681–695 located at C-terminal domain of the enzyme. According to the equilibrium unfolding experiments and considering thermodynamic m value and ΔG(H2O), we found that the folded state of H700N, L701T, and H700N/L701T are more compact relative to the folded state of wild-type protein and they become stabilized upon mutation. However, the compactness and stability of other variants are less than those of wild-type protein. According to enzyme activity measurements, we found that the catalytic efficiency of structurally stabilized variants is decreased, while that of destabilized mutants is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Regad, L., Martin, J., Nuel, G., & Camproux, A. C. (2010). Mining protein loops using a structural alphabet and statistical exceptionality. BMC Bioinformatics, 11, 75.

    Article  Google Scholar 

  2. Shehu, A., & Kavraki, L. E. (2012). Modeling structures and motions of loops in protein molecules. Entropy, 14(2), 252–290.

    Article  CAS  Google Scholar 

  3. Shehu, A., Clementi, C., & Kavraki, L. E. (2006). Modeling protein conformational ensembles: From missing loops to equilibrium fluctuations. Proteins, 65(1), 164–179.

    Article  CAS  Google Scholar 

  4. Rufino, S. D., Donate, L. E., Canard, L. H., & Blundell, T. L. (1997). Predicting the conformational class of short and medium size loops connecting regular secondary structures: Application to comparative modelling. Journal of Molecular Biology, 267(2), 352–367.

    Article  CAS  Google Scholar 

  5. Tosatto, S. C. E., Bindewald, E., Hesser, J., & Männer, R. (2002). A divide and conquer approach to fast loop modeling. Protein Engineering, 15(4), 279–286.

    Article  CAS  Google Scholar 

  6. Du, P., Andrec, M., & Levy, R. M. (2003). Have we seen all structures corresponding to short protein fragments in the Protein Data Bank? An update. Protein Engineering, 16(6), 407–414.

    Article  CAS  Google Scholar 

  7. Zhou, H. X. (2001). Loops in proteins can be modeled as worm-like chains. Journal of Physical Chemistry B, 105(29), 6763–6766.

    Article  CAS  Google Scholar 

  8. Bartalesi, I., Bertini, I., Di Rocco, G., Ranieri, A., Rosato, A., Vanarotti, M., et al. (2004). Protein stability and mutations in the axial methionine loop of a minimal cytochrome c. JBIC Journal of Biological Inorganic Chemistry, 9(5), 600–608.

    Article  CAS  Google Scholar 

  9. Kurchan, E., Roder, H., & Bowler, B. E. (2005). Kinetics of loop formation and breakage in the denatured state of iso-1-cytochrome c. Journal of Molecular Biology, 353(3), 730–743.

    Article  CAS  Google Scholar 

  10. Hynes, T. R., Kautz, R. A., Goodman, M. A., Gill, J. F., & Fox, R. O. (1989). Transfer of a beta-turn structure to a new protein context. Nature, 339, 73–76.

    Article  CAS  Google Scholar 

  11. Murphy, M. E., Fetrow, J. S., Burton, R. E., & Brayer, G. D. (1993). The structure and function of omega loop A replacements in cytochrome c. Protein Science, 2, 1429–1440.

    Article  CAS  Google Scholar 

  12. Mulligan-Pullyblank, P., Spitzer, J. S., Gilden, B. M., & Fetrow, J. S. (1996). Loop replacement and random mutagenesis of omega-loop D, residues 70-84, in iso-1-cytochrome c. Journal of Biological Chemistry, 271, 8633–8645.

    Article  CAS  Google Scholar 

  13. Nagi, A. D., & Regan, L. (1997). An inverse correlation between loop length and stability in a four-helix-bundle protein. Folding and Design, 2(1), 67–75.

    Article  CAS  Google Scholar 

  14. Koga, N., Tatsumi-Koga, R., Liu, G., Xiao, R., Acton, T. B., Montelione, G. T., & Baker, D. (2012). Principles for designing ideal protein structures. Nature, 491, 222–227.

    Article  CAS  Google Scholar 

  15. Höcker, B. (2012). Structural biology: A toolbox for protein design. Nature, 491, 204–205.

    Article  Google Scholar 

  16. Balasco, N., Esposito, L., De Simone, A., & Vitagliano, L. (2013). FOR the RECORD: Role of loops connecting secondary structure elements in the stabilization of proteins isolated from thermophilic organisms. Protein Science, 22, 1016–1023.

    Article  CAS  Google Scholar 

  17. Huang, W., Lunin, V. V., Li, Y., Suzuki, S., Sugiura, N., Miyazono, H., & Cygler, M. (2003). Crystal structure of Proteus vulgaris chondroitin sulfate ABC lyase I at 1.9 Å resolution. Journal of Molecular Biology, 328(3), 623–634.

    Article  CAS  Google Scholar 

  18. Sandvig, A., Berry, M., Barrett, L. B., Butt, A., & Logan, A. (2004). Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: Expression, receptor signaling, and correlation with axon regeneration. Glia, 46(3), 225–251.

    Article  Google Scholar 

  19. Matsui, F., & Oohira, A. (2004). Proteoglycans and injury of the central nervous system. Congenital Anomalies, 44(4), 181–188.

    Article  CAS  Google Scholar 

  20. Crespo, D., Asher, R. A., Lin, R., Rhodes, K. E., & Fawcett, J. W. (2007). How does chondroitinase promote functional recovery in the damaged CNS? Experimental Neurology, 206(2), 159–171.

    Article  CAS  Google Scholar 

  21. Bradbury, E. J., Moon, L. D. F., Popat, R. J., King, V. R., Bennett, G. S., Patel, P. N., et al. (2002). Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature, 416(6881), 636–640.

    Article  CAS  Google Scholar 

  22. Ikegami, T., Nakamura, M., Yamane, J., Katoh, H., Okada, S., Iwanami, A., et al. (2005). Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth associated protein 43 positive fibers after rat spinal cord injury. European Journal of Neuroscience, 22, 3036–3046.

    Article  Google Scholar 

  23. Nazari-Robati, M., Khajeh, Kh, Aminian, M., Fathi-Roudsari, M., & Golestani, A. (2012). Co-solvent mediated thermal stabilization of chondroitinase ABC I form Proteus vulgaris. International Journal of Biological Macromolecules, 50(3), 487–492.

    Article  CAS  Google Scholar 

  24. Nazari-Robati, M., Khajeh, Kh, Aminian, M., Mollania, N., & Golestani, A. (2013). Enhancement of thermal stability of chondroitinase ABC I by site-directed mutagenesis: An insight from Ramachandran plot. BBA, 1834, 479–486.

    CAS  Google Scholar 

  25. Fisher, C. L., & Pei, G. K. (1997). Modification of a PCR-based site-directed mutagenesis method. BioTechniques, 23, 570–574.

    CAS  Google Scholar 

  26. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  27. Yamagata, T., Saito, H., Habuchi, O., & Suzuki, S. (1968). Purification and properties of bacterial chondroitinases and chondrosulfatases. Journal of Biological Chemistry, 243(7), 1523–1535.

    CAS  Google Scholar 

  28. Tomazic, S. J., & Klibanov, A. M. (1988). Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. Journal of Biological Chemistry, 263(7), 3086–3091.

    CAS  Google Scholar 

  29. Santoro, M. M., & Bolen, D. W. (1988). Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry, 27, 8063–8068.

    Article  CAS  Google Scholar 

  30. Pace, C. N. (1986). Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods in Enzymology, 131, 266–280.

    Article  CAS  Google Scholar 

  31. Tina, K. G., Bhadra, R., & Srinivasan, N. (2007). PIC: Protein Interactions Calculator. Nucleic Acids Research, 35(Web Server Issue), W473–W476.

    Article  CAS  Google Scholar 

  32. Das, R., & Baker, D. (2008). Macromolecular modeling with rosetta. Annual Review of Biochemistry, 77, 363–382.

    Article  CAS  Google Scholar 

  33. Smith, C. A., & Kortemme, T. (2008). Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. Journal of Molecular Biology, 380, 742–756.

    Article  CAS  Google Scholar 

  34. Myers, J. K., Pace, C. N., & Scholtz, J. M. (1995). Denaturant m values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding. Protein Science, 4, 2138–2148.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by research council of Tarbiat Modares University.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khosro Khajeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram Shirdel, S., Khalifeh, K., Golestani, A. et al. Critical Role of a Loop at C-Terminal Domain on the Conformational Stability and Catalytic Efficiency of Chondroitinase ABC I. Mol Biotechnol 57, 727–734 (2015). https://doi.org/10.1007/s12033-015-9864-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-015-9864-3

Keywords

Navigation