Skip to main content

Advertisement

Log in

Immobilization of the Bacillus licheniformis α-Amylase on Azole Functionalized Nanoparticle: More Active, Stable, and Usability

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Enzymes are a powerful tool employed in industrial applications due to their high specificity and efficiency. Amylase enzymes play an important role in detergent, textile, analytical chemistry, and paper industries. Here we present the design, synthesis, and characterization of azole functionalized nanoparticles for the immobilization of α-amylase from Bacillus licheniformis (BlA). A modest binding efficiency (47%) was determined by the BCA assay. Enzymatic activity was measured using DNS method and illustrated the immobilization of amylase with the designed nanoparticles enhanced the thermal stability and long-term storage of amylases at a wide range of temperatures and pHs. With the required scale-up study, these implications amplify novel ways to implement this Fe3O4-PGMA-5A immobilized BlA enzyme in particular industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abdella MAA, El-sherbiny GM, El-shamy AR et al (2020) Statistical optimization of chemical modification of chitosan-magnetic nano- particles beads to promote Bacillus subtilis MK1 α -amylase immobilization and its application. Bull Natl Res Cent. https://doi.org/10.1186/s42269-020-00301-3

    Article  Google Scholar 

  2. He L, Mao Y, Zhang L et al (2017) Functional expression of a novel α -amylase from Antarctic psychrotolerant fungus for the baking industry and its magnetic immobilization. BMC Biotechnol. https://doi.org/10.1186/s12896-017-0343-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Verma NK, Raghav N (2021) Comparative study of covalent and hydrophobic interactions for α -amylase immobilization on cellulose derivatives. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2021.01.033

    Article  PubMed  Google Scholar 

  4. Defaei M, Taheri-kafrani A (2020) Alpha-amylase immobilized on polycaprolactone-grafted magnetic nanoparticles: improving stability and reusability. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.6412

    Article  Google Scholar 

  5. Leila S, Mahmoud H, Khiabani S et al (2015) Enhanced stability and catalytic activity of immobilized a-amylase on modified Fe3O4 nanoparticles for potential application in food industries. J Nanopart Res. https://doi.org/10.1007/s11051-015-3174-3

    Article  Google Scholar 

  6. Aghaei H, Mohammadbagheri Z, Hemasi A, Taghizadeh A (2022) Efficient hydrolysis of starch by α-amylase immobilized on cloister 30B and modified forms of cloister 30B by adsorption and covalent methods. Food Chem. https://doi.org/10.1016/j.foodchem.2021.131425

    Article  PubMed  Google Scholar 

  7. Arruebo-Rivera PL, Castillo-Alfonso F, Troya A et al (2021) Modeling and experimental validation of algorithms for maximum quantity of protein immobilized on solid supports by electrostatic adsorption in the strategy of rational design of immobilized derivatives. Protein J. https://doi.org/10.1007/s10930-021-09992-7

    Article  PubMed  Google Scholar 

  8. Rajashekhar KK, Neelagund S, Chikkanna MM, Basavarajappa A (2018) Immobilization of hyperthermostable -amylase using magnetite [Fe3O4] nano particle to promote the properties for industrial applications. J Biosci. https://doi.org/10.1166/jbns.2018.1579

    Article  Google Scholar 

  9. Shinde P, Musameh M, Gao Y et al (2018) Immobilization and stabilization of alcohol dehydrogenase on polyvinyl alcohol fiber. Biotechnol Rep. https://doi.org/10.1016/j.btre.2018.e00260

    Article  Google Scholar 

  10. Swelam AA, Awad MB, Gedamy YR, Tawfik A (2019) Fe3O4 nanoparticles: synthesis, characterization, and application in removing iron from aqueous solution and groundwater. Egypt J Chem. https://doi.org/10.21608/EJCHEM.2019.5527.1488

    Article  Google Scholar 

  11. Akhond M, Pashangeh K (2016) Efficient immobilization of porcine pancreatic α -amylase on amino-functionalized magnetite nanoparticles : characterization and stability evaluation of the immobilized enzyme. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-016-2145-1

    Article  PubMed  Google Scholar 

  12. Sohrabi N, Rasouli N, Torkzadeh M (2014) Enhanced stability and catalytic activity of immobilized a-amylase. Chem Eng J. https://doi.org/10.1016/j.cej.2013.11.059

    Article  Google Scholar 

  13. Abbas S, Noma A, Ulu A et al (2020) Preparation and characterization of amino and carboxyl functionalized core-shell Fe3O4/SiO2 for L- asparaginase immobilization: a comparison study. Biocatal Biotransform. https://doi.org/10.1080/10242422.2020.1767605

    Article  Google Scholar 

  14. Długosz O, Matysik J, Matyjasik W, Banach M (2020) Catalytic and antimicrobial properties of a-amylase immobilized on the surface of metal oxide nanoparticles. J Clust Sci. https://doi.org/10.1007/s10876-020-01921-5

    Article  Google Scholar 

  15. Tarhan T, Ulu A, Sariçam M et al (2020) Maltose functionalized magnetic core/shell Fe3O4 @ Au nanoparticles for an efficient L -asparaginase immobilization. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.09.116

    Article  PubMed  Google Scholar 

  16. Oktay B, Demir S, Kayaman-Apohan N (2015) Immobilization of α-amylase onto poly(glycidyl methacrylate) grafted electrospun fibers by ATRP. Mater Sci Eng. https://doi.org/10.1016/j.msec.2015.02.033

    Article  Google Scholar 

  17. Lei L, Liu X, Li Y et al (2011) Study on synthesis of poly ( GMA ) -grafted Fe3O4/SiO X magnetic nanoparticles using atom transfer radical polymerization and their application for lipase immobilization. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2010.09.031

    Article  Google Scholar 

  18. Bayramoǧlu G, Yilmaz M, Arica MY (2004) Immobilization of a thermostable α-amylase onto reactive membranes: kinetics characterization and application to continuous starch hydrolysis. Food Chem. https://doi.org/10.1016/S0308-8146(03)00283-8

    Article  Google Scholar 

  19. Bayramoglu G, Senkal BF, Arica MY (2013) Preparation of clay-poly(glycidyl methacrylate) composite support for the immobilization of cellulase. Appl Clay Sci. https://doi.org/10.1016/j.clay.2013.09.010

    Article  Google Scholar 

  20. Al-labban HMY, Abduljabbar A, Aljanaby J (2020) An overview of some heterocyclic organic compounds; synthesis, characterization, thermal properties, and antibacterial activity. J Pharm Res. https://doi.org/10.31838/ijpr/2020.SP1.217

    Article  Google Scholar 

  21. Hassankhani A, Mosaddegh E (2015) An efficient synthesis of tetrahyroterazole [1,5-a] quinazoline derivatives by a three-component reaction of 5-aminotetrazole, aryl aldehydes, and dimedone. Sci Iran C. https://doi.org/10.1002/aoc.3524

    Article  Google Scholar 

  22. Iravani K, Torkzadeh-mahani M, Mosaddegh E (2018) Synthesis and characterization of aminotetrazole-functionalized magnetic chitosan nanocomposite as a novel nanocarrier for targeted gene delivery. Mater Sci Eng. https://doi.org/10.1016/j.msec.2018.03.032

    Article  Google Scholar 

  23. Mahmood A, Ullah I, Longo RL, Irfan A (2015) Synthesis and structure of 1-benzyl-5-amino-1 H -tetrazole in the solid-state and solution: combining X-ray diffraction, H NMR, FT – IR, and UV – Vis spectra and DFT calculations. Comptes Rendus Chim. https://doi.org/10.1016/j.crci.2014.07.009

    Article  Google Scholar 

  24. The UniProt Consortium (2021) UniProt: the universal protein knowledgebase in. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa1100

    Article  Google Scholar 

  25. Riguero V, Clifford R, Dawley M et al (2020) Immobilized metal affinity chromatography optimization for poly-histidine tagged proteins. J Chromatogr A. https://doi.org/10.1016/j.chroma.2020.461505

    Article  PubMed  Google Scholar 

  26. Karataş E, Tülek A, Yildirim D et al (2021) Immobilization of Sporothrix schenckii 1099–18 exo-polygalacturonase in magnetic mesoporous silica yolk-shell spheres: highly reusable biocatalysts for apple juice clarification. Food Biosci. https://doi.org/10.1016/j.fbio.2021.101324

    Article  Google Scholar 

  27. Tülek A, Yıldırım D, Aydın D (2021) Highly-stable Madurella mycetomatis laccase immobilized in silica-coated ZIF-8 nanocomposites for the environmentally friendly cotton bleaching process. Colloid Surf B. https://doi.org/10.1016/j.colsurfb.2021.111672

    Article  Google Scholar 

  28. Ulu A, Birhanli E, Boran F et al (2020) Laccase-conjugated thiolated chitosan-Fe3O4 hybrid composite for biocatalytic degradation of organic dyes. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.02.006

    Article  PubMed  Google Scholar 

  29. Karatas E (2021) Immobilization of Sporothrix schenckii 1099–18 exo-polygalacturonase in magnetic mesoporous silica yolk-shell spheres: highly reusable biocatalysts for apple juice clarification. Food Biosci. https://doi.org/10.1016/j.fbio.2021.101324

    Article  Google Scholar 

  30. Soydan AM, Bozkurt A, Introduction I (2015) Synthesis and characterization of novel multifunctional polymer grafted hollow silica spheres. J Mater Res. https://doi.org/10.1557/jmr.2015.222

    Article  Google Scholar 

  31. Yek SM, Azarifar D, Nasrollahzadeh M et al (2020) Heterogenized Cu (II) complex of 5-aminotetrazole immobilized on graphene oxide nanosheets as an e ffi cient catalyst for treating environmental contaminants. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.116952

    Article  Google Scholar 

  32. Milani ZM, Jalal R, Goharshadi EK (2017) Carbodiimide for covalent -amylase immobilization onto magnetic nanoparticles. Int J Nanosci Ser. https://doi.org/10.1142/S0219581X17500156

    Article  Google Scholar 

  33. Dhavale RP, Parit SB, Sahoo SC et al (2018) α-amylase immobilized on magnetic nanoparticles: reusable robust nano-bio catalyst for starch hydrolysis. Mater Res Express. https://doi.org/10.1088/2053-1591/aacef1

    Article  Google Scholar 

  34. Ates B, Ulu A, Köytepe S et al (2018) Magnetic-propelled Fe3O4-chitosan carriers enhance l-asparaginase catalytic activity: a promising strategy for enzyme immobilization. RSC Adv. https://doi.org/10.1039/c8ra06346j

    Article  PubMed  PubMed Central  Google Scholar 

  35. He T, Le TY, Qi L et al (2014) Improved performance of α-amylase immobilized on poly(glycidyl methacrylate-co-ethylene methacrylate) beads. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2014.01.066

    Article  PubMed  Google Scholar 

  36. Zhang D, Cao C, Lu S et al (2019) Experimental insight into catalytic mechanism of transition metal oxide nanoparticles on combustion of 5-amino-1 H -tetrazole energetic propellant by multi kinetics methods and TG-FTIR-MS analysis. Fuel. https://doi.org/10.1016/j.fuel.2019.02.007

    Article  Google Scholar 

  37. Ulu A, Abbas S, Noma A et al (2019) Chloro-modified magnetic Fe3O4 @ MCM-41 core-shell nanoparticles for L-asparaginase immobilization with improved catalytic activity, reusability, and storage stability. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-018-2853-9

    Article  PubMed  Google Scholar 

  38. Akhtar H, Pourmadadi M, Yazdian F, Rashedi H (2022) Kosmotropic and chaotropic effect of biocompatible Fe3O4 nanoparticles on egg white lysozyme; the key role of nanoparticle-protein corona formation. J Mol Struct. https://doi.org/10.1016/j.molstruc.2021.132016

    Article  Google Scholar 

  39. Xu J, Xing Y, Liu Y et al (2021) Facile in situ microwave synthesis of Fe3O4@MIL-100(Fe) exhibiting enhanced dual enzyme mimetic activities for colorimetric glutathione sensing. Anal Chim Acta. https://doi.org/10.1016/j.aca.2021.338825

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wan J, Zhang L, Yang B et al (2022) Enzyme immobilization on amino-functionalized Fe3O4@SiO2 via electrostatic interaction with enhancing biocatalysis in sludge dewatering. Chem Eng J. https://doi.org/10.1016/j.cej.2021.131976

    Article  Google Scholar 

  41. Singh S, Singh AK, Singh MC, Pandey PK (2017) Immobilization increases the stability and reusability of pigeon pea NADP+ linked glucose-6-phosphate dehydrogenase. Protein J. https://doi.org/10.1007/s10930-017-9702-5

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang K, Lv R, Sun S et al (2021) Nanobiocatalyst consisting of immobilized α-amylase on montmorillonite exhibiting enhanced enzymatic performance based on the allosteric effect. Colloid Surf B. https://doi.org/10.1016/j.colsurfb.2021.112290

    Article  Google Scholar 

  43. Hosseini A, Ramezani S, Tabibiazar M et al (2021) Immobilization of α-amylase in ethylcellulose electrospun fibers using emulsion-electrospinning method. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2021.118919

    Article  PubMed  Google Scholar 

  44. Khan MJ, Husain Q, Azam A (2012) Immobilization of porcine pancreatic α -amylase on magnetic Fe2O3 nanoparticles. Appl Hydrolys Starch. https://doi.org/10.1007/s12257-011-0105-8

    Article  Google Scholar 

  45. Journal AI, Mohamed SA, Al-harbi MH et al (2018) Immobilization of trichoderma harzianum α - amylase on PPyAgNp/Fe3O4 -nanocomposite: chemical and physical properties. Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2018.1453828

    Article  Google Scholar 

  46. Papadopoulou A, Zarafeta D, Galanopoulou AP, Stamatis H (2019) Enhanced catalytic performance of trichoderma reesei cellulase immobilized on magnetic hierarchical porous carbon nanoparticles. Protein J. https://doi.org/10.1007/s10930-019-09869-w

    Article  PubMed  Google Scholar 

  47. Patil SS, Rathod VK (2022) Combined effect of enzyme co-immobilized magnetic nanoparticles (MNPs) and ultrasound for effective extraction and purification of curcuminoids from Curcuma longa. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2021.114385

    Article  Google Scholar 

  48. Khanpanuek S, Lunprom S, Reungsang A, Salakkam A (2022) Repeated-batch simultaneous saccharification and fermentation of cassava pulp for ethanol production using amylases and Saccharomyces cerevisiae immobilized on bacterial cellulose. Biochem Eng J. https://doi.org/10.1016/j.bej.2021.108258

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge GERC (Gebze Enzyme Recognition Center, Gebze Technical University Turkey) for the support and Hayat Kimya Corp. for providing the expression vector containing the amyS gene from Bacillus licheniformis. We also would like to thank Mehmet Mervan Çakar for his support in experimental studies (University of Zagreb, Croatia), Ahmet Nazım for SEM images, and Adem Şen for XRD (Materials Science and Engineering, Gebze Technical University Turkey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşe Aslan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaptan Usul, S., Binay, B., Soydan, A.M. et al. Immobilization of the Bacillus licheniformis α-Amylase on Azole Functionalized Nanoparticle: More Active, Stable, and Usability. Protein J 41, 671–680 (2022). https://doi.org/10.1007/s10930-022-10082-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-022-10082-5

Keywords

Navigation