Skip to main content
Log in

Cloning, Expression and Characterization of Spore Wall Protein 5 (SWP5) of Indian Isolate NIK-1S of Nosema bombycis

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

SWPs are the major virulence component of microsporidian spores. In microsporidia, SWPs can be found either in exospore or endospore to serve as a putative virulence factor for host cell invasion. SWP5 is a vital protein that involves in exospore localization and supports the structural integrity of the spore wall and this action potentially modulates the course of infection in N. bombycis. Here we report recombinant SWP5 purification using Ni-NTA IMAC and SEC. GFC analysis reveals SWP5 to be a monomer which correlates with the predicted theoretical weight and overlaps with ovalbumin peak in the chromatogram. The raised polyclonal anti-SWP5 antibodies was confirmed using blotting and enterokinase cleavage experiments. The resultant fusion SWP5 and SWP5 in infected silkworm samples positively reacts to anti-SWP5 antibodies is shown in ELISA. Immunoassays and Bioinformatic analysis reveal SWP5 is found to be localized on exospore and this action could indicate the probable role of SWP5 in host pathogen interactions during spore germination and its contribution to microsporidian pathogenesis. This study will support development of a field-based diagnostic kit for the detection N. bombycis NIK-1S infecting silkworms. The analysis will also be useful for the formulation of drugs against microsporidia and pebrine disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SWPs:

Spore wall proteins

PTPs:

Polar tube proteins

ELISA:

Enzyme-linked immunosorbent assay

CD:

Circular dichroism

GFC:

Gel Filtration Chromatography

Ni-NTA IMAC:

Nickel- Trinitilo acetic acid Immobilized metal affinity chromatography

SEC:

Size exclusion chromatography

Trx:

Thioredoxin

ALP:

Alkaline phosphatase

BCIP:

5-bromo-4-chloro-3-indolyl phosphate

NBT:

Niro blue tetrazolium

ECL:

Enhanced Chemiluminescence

References

  1. Bing H, Louis MW (2017) Microsporidia: Obligate Intracellular Pathogens Within the Fungal Kingdom, in: The Fungal Kingdom. Microbiol Spectr 5:97–113

    Google Scholar 

  2. Alexander M, Rainer W, Peter D (2005) Zoonotic Potential of the Microsporidia. Clin Microbiol Rev 18:423–445

    Article  Google Scholar 

  3. Elizabeth SD (2005) Microsporidiosis: an emerging and opportunistic infection in humans and animals- Review. Acta Trop 94:61–76

    Article  Google Scholar 

  4. Franzen C (2008) Microsporidia: A Review of 150 years of research. Open Parasitol J 2:1–34

    Article  Google Scholar 

  5. Justin LS, Virginia W, Michael LK (2012) Microsporidiosis in Zebrafish Research Facilities. ILAR J 53:106–113

    Article  Google Scholar 

  6. Jee EH, Kathy FJT, Carlos RP, Donald VL, Rita MR, Marc LG (2016) Detection of a new microsporidium Perezia sp. in shrimps Penaeus monodon and P. indicus by histopathology, in situ hybridization and PCR. Dis Aquat Organ 120:165–171

    Article  Google Scholar 

  7. Aneta S, Beata H, Malgorzata C, Marek K, Tomasz HS, Waldemar K, Mariusz T, Grzegorz B (2019) Microspordia Nosema spp. – obligate bee parasites are transmitted by air. Sci Rep 9:14376

    Article  Google Scholar 

  8. Bhat IA, Buhroo ZI, Bhat MA (2017) Microsporidiosis in silkworms with particular reference to mulberry silkworm (Bombyx mori L.). Int J Entomol Res 2:1–9

    CAS  Google Scholar 

  9. Hukuhara T (2017) The epizootiology of pebrine, one of the great scourges of sericulture. J Biochem Biotechnol 1:1–3

    Google Scholar 

  10. Shabir B, Ifat B, Afifa SK (2009) Microsporidiosis of silkworm, Bombyx mori L. (Lepidoptera- Bombycidae): A review. Afr J Agric Res 4:1519–1523

    Google Scholar 

  11. Sunil KG, Zakir H, Madana MN, Kalidas M (2016) Impact of microsporidian infection on growth and development of silkworm Bombyx mori L. (Lepidoptera: Bombycidae). Agric Nat Resour 50:388–395

    Google Scholar 

  12. Bing H, Peter MT, Louis MW (2020) Invasion of host cells by Microsporidia. Front Microbiol 20:172

    Google Scholar 

  13. Alison MD, Judith ES (2001) Microsporidian life cycles and diversity: the relationship between virulence and transmission. Microbes Infect 3:381–388

    Article  Google Scholar 

  14. Donglin Y, Lixia P, Zhongzhu C, Huihui D, Bo L, Jie L, Guoging P (2018) The roles of microsporidia spore wall proteins in the spore wall formation and polar tube anchorage to spore wall during development and infection processes. Exp Parasitol 187:93–100

    Article  Google Scholar 

  15. Qing L, Wang L, Youpeng F, Xianzhi M, Keke L, Bingqian Z, Jie C, Guoquing P, Mengxian L, Zeyang Z (2020) Identification and Characterization a novel polar tube protein (NbPTP6) from the microsporidian Nosema bombycis. Parasites Vectors 13:475

    Article  Google Scholar 

  16. Wang Y, Ma Y, Wang D, Liu W, Chen J, Jiang Y, Yang R, Qin L (2019) Polar tube structure and three polar tube proteins identified from Nosema pernyi. J Invertebr Pathol 168:107272

    Article  CAS  PubMed  Google Scholar 

  17. Dissanaike AS (1955) Emergence of the sporoplasm in Nosema helminthorum. Nature 175:1002–1003

    Article  CAS  PubMed  Google Scholar 

  18. Yanji X, Louis MW (2005) The Microsporidian polar tube: A highly specialised invasion organelle. Int J Parasitol 35:941–953

    Article  Google Scholar 

  19. Keohane EM, Weiss LM (1998) Characterization and function of the microsporidian polar tube: a review. Folia Parasitol 45:117–127

    CAS  Google Scholar 

  20. Ying W, Lixia G, Jinzhi X, Ping J, Qin A, Yaojia P, Yu J, Siyi H, Xuemei T, Jie L, Guoging P (2020) Expression and identification of a novel spore wall protein in microsporidian Nosema bombycis. J Eukaryot Microbiol 20:12820

    Google Scholar 

  21. Donglin Y, Guoqing P, Xiaoqun D, Yawei S, Chunfeng L, Pai P, Bo Luo, Maofei B, Yue S, Cheng M, Jie C, Zhengang M, Lina G, Zhi L, Rui T, Cuifang W, Zeyang Z (2015) Interaction and Assembly of Two Novel Proteins in the spore wall of the microsporidian species Nosema bombycis and their roles in adherence to and infection of host cells. Infect Immun 83:1715–1731

    Article  Google Scholar 

  22. Donglin Y, Lixia P, Pai P, Xiaoqun D, Chunfeng L, Tian L, Mengxian L, Jie C, Yujiao W, Huihui D, Bo L, Yue S, Rui T, Jie L, Zeyang Z, Guoqing P (2017) Interaction between SWP9 and Polar tube proteins of the Microsporidian Nosema bombycis and function of SWP9 as a scaffolding protein contribute to polar tube tethering to the spore wall. Infect Immun 85:872–816

    Google Scholar 

  23. Jie C, Lina G, Mengxian L, Tian L, Zhi L, Gonglin Y, Chao M, Haijing W, Zhengang M, Chunfeng L, Guoquing P, Zeyang Z (2013) Identification of novel chitin-binding spore wall protein (NbSWP12) with a BAR-2 domain from Nosema bombycis (microsporidia). Parasitology 140:11

    Google Scholar 

  24. Ying W, Xiaoqun D, Qiang M, Fangyan L, Guoging P, Tian L, Zeyang Z (2015) Characterization of a novel spore wall protein NbSWP16 with proline-rich tandem repeats from Nosema bombycis (Microsporidia). Parasitology 142:534–542

    Article  Google Scholar 

  25. Zhengli W, Yanhong L, Guoquing P, Zeyang Z, Zhonghuai X (2009) SWP25, A Novel Protein Associated with the Nosema bombycis Endospore. J Eukaryot Microbiol 56:113–118

    Article  Google Scholar 

  26. Yanhong L, Zhengli W, Guoquing P, Weiwei H, Ruizhi Z, Junhua H, Zeyang Z (2009) Identification of a novel spore wall protein (SWP26) from microsporidia Nosema bombycis. Int J Parasitol 39:391–398

    Article  Google Scholar 

  27. Zhengli W, Yanhong L, Guoqing P, Xiaohui T, Junhua H, Zeyang Z, Zhonghuai X (2008) Proteomic analysis of spore wall proteins and identification of two spore wall proteins from Nosema bombycis (Microsporidia). Proteomics 8:2447–2461

    Article  Google Scholar 

  28. Zhi L, Guoqing P, Tian L, Wei H, Jie C, Lina G, Donglin Y, Linling W, Zeyang Z (2012) SWP5, a spore wall protein, interacts with polar tube proteins in the parasitic microsporidian Nosema bombycis. Eukaryot Cell 11:229–237

    Article  Google Scholar 

  29. Shunfeng C, Xingmeng L, Haihong Q, Mingqian L, Zhenzhen F (2011) Identification of Nosema bombycis (Microsporidia) spore wall protein corresponding to spore phagocytosis. Parasitology 138:1102–1109

    Article  Google Scholar 

  30. Esvaran VG, Anupama J, Olle T, Siripuk S, Rakesh KM, Kangayam MP (2020) Targeting essential genes of Nosema for the diagnosis of pebrine disease in silkworms. Annals of Parasitology 66:303–310

    PubMed  Google Scholar 

  31. Esvaran VG, Mohanasundaram A, Mahadeva S, Gupta T, Ponnuvel KM (2019) Development and comparison of real time and conventional PCR tools targeting β-tubulin gene for detection of Nosema infections in silkworms. J Parasitic Dis 43:31–38

    Article  Google Scholar 

  32. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  33. The Uniprot Consortium (2021) Uniprot: the universal protein knowledgebase in 2021. Nucleic Acids Res 49:D1

    Article  Google Scholar 

  34. Kazutaka K, John R, Kazunori DY (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166

    Article  Google Scholar 

  35. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:636–641

    Article  Google Scholar 

  36. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, Beer DTAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:296–303

    Article  Google Scholar 

  37. Morten K, Gohar M, Sheng W, Jianzhu M, Jinbo X (2014) RaptorX server: a resource for template-based protein structure modelling. Methods Mol Biol 1137:17–27

    Article  Google Scholar 

  38. Peter D, Soren B, Nikolaj B (2004) Prediction of proprotein convertase cleavage sites. Protein Eng Des Selection 17:107–112

    Article  Google Scholar 

  39. Hajar O, Navid N, Manica N, Ali HE, Ghasemi Y (2018) A Comprehensive Review of Signal Peptides: Structure, Roles and Applications. Eur J Cell Biol 97:422–441

    Article  Google Scholar 

  40. Tanja LC, Lars KAM, Ramneek G, Karen S, Soren B (2004) Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Selection 17:527–536

    Article  Google Scholar 

  41. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  CAS  PubMed  Google Scholar 

  42. Lars K, Jannick DB, Nikolaj Blom NetAcet: Prediction of N-terminal acetylation sites, 2004,Bioinformatics27:1269–70

  43. Karin J (2007) NetCGlyc 1.0: Prediction of mammalian C-mannosylation sites. Glycobiology 17:868–876

    Article  Google Scholar 

  44. Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos SL, Gupta R, Bennett EP, Mandel U, Brunak S, Wandall HH, Levrev SB, Clausen H (2013) Precision mapping of the human O-GalNAc glycoproteome through simple Cell technology. EMBO J 32:1478–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Blom N, Sicheritz PT, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    Article  CAS  PubMed  Google Scholar 

  46. Gupta R, Brunak S (2002) Prediction of glycosylation across the human proteome and the correlation to protein function. Pacific Symposium on Biocomputing 7:310 – 22

  47. Bindu A, Anupriya G, Satish TVT, Hosahalli SS, Chhitar MG (2020) Actin sequestering protein, profilin, regulates intracellular vesicle transport in Leishmania. Mol Biochem Parasitol 238:111280

    Article  Google Scholar 

  48. Carolina PI, Miguel AAN (2008) K2D2: Estimation of secondary structure from circular dichroism spectra. BMC Struct Biol 8:25

    Article  Google Scholar 

  49. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  50. Kandavelmani A, Shanmughavel P (2017) Evaluation of In silico protein secondary structure prediction methods by employing statistical techniques. Biomedical and Biotechnology Research Journal 1:29–36

    Article  Google Scholar 

  51. Dragana F, Radoicic M, Bratoljub M (2000) Determination of the critical molar mass of ovalbumin oligomers degraded by ultrasound. J Serb Chem Soc 65:2123

    Google Scholar 

  52. Darui X, Alicia F, Garen C, Nick VG, Yuh MC (2012) Sequence and structural analyses of nuclear export signals in the NESdb database. Mol Biol Cell 23:3677–3693

    Article  Google Scholar 

  53. Dolgikh VV, Semenov PB, Beznusenko GV (2007) Peculiarities of glycosylation of proteins in spores of microsporidia Paranosema (Antonospora) grylli. Cell and Tissue Biology 1:427–433

    Article  Google Scholar 

  54. Edward RL, Zhijian L, Elizabeth ADS, Lisa ACR, John MM (2000) Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Methods Enzymol 326:322–340

    Article  Google Scholar 

  55. Norma JG (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  Google Scholar 

  56. Amar BTG, Sang JC (2014) Intrinsic Tryptophan Fluorescence in the detection and analysis of proteins: A focus on Forster Resonance energy transfer techniques. Int J Mol Sci 15:22518–22538

    Article  Google Scholar 

  57. Donglin Y, Xiaoqun D, Pai P, Mengxian L, Cheng M, Junjie JGQ, Haijing W, Tie L, Xiaowei Z, Guoqing P, Zeyang Z (2014) NbHSWP11, a microsporidia Nosema bombycis protein, localizing in the spore wall and membranes, reduces spore adherence to host cell BME. J Parasitol 100:623–632

    Article  Google Scholar 

Download references

Acknowledgements

KMP thanks the Central Silk Board (CSB), Government of India for the financial support in the form of a research grant (Project No. AIT-5872).

Author information

Authors and Affiliations

Authors

Contributions

VGE: Concept/ Experimentation; SP: Experimentation/ Manuscript writing; AJ: Initial Manuscript writing and editing; HSS: Scientific Inputs/ Infrastructural support; HSS: Scientific Inputs/ Infrastructural support; KMP: Concept/ Technical advice/ Formal analysis/ Scientific inputs;

Corresponding author

Correspondence to Kangayam M. Ponnuvel.

Ethics declarations

Competing Interest

Authors have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esvaran, V.G., Ponnuvel, S., Jagadish, A. et al. Cloning, Expression and Characterization of Spore Wall Protein 5 (SWP5) of Indian Isolate NIK-1S of Nosema bombycis. Protein J 41, 596–612 (2022). https://doi.org/10.1007/s10930-022-10078-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-022-10078-1

Keywords

Navigation