Skip to main content
Log in

Photopolymerization with EDTA and Riboflavin for Proteins Analysis in Polyacrylamide Gel Electrophoresis

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A new method for photosensitized polymerization of polyacrylamide gels was proposed. Photopolymerization of acrylamide/N,N′-methylenebisacrylamide (AM/Bis) was assisted with combination of catalyst ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) and photoinitiator riboflavin (RF). The prepared cross-linked AM/Bis + EDTA/RF gels were tested in electrophoretic SDS–PAGE system at high concentration of AM (20 wt%). The efficiency of these systems for electrophoretic separation of histones of human blood lymphocytes was demonstrated. In principle, such gels with small pores in the separation zone can offer advantages for resolution of proteins. The advantages of proposed method also include simple technique and possibility of gel preparation in a timely manner (for 10–15 min). However, in microporous gel systems some limitations in electroblotting technique could occur, which is particularly crucial for hydrophobic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

The data that support the findings of this study are available from the author, Olena Samoylenko (a-samoilenko@ukr.net) upon reasonable request.

Abbreviations

AM:

Acrylamide

APS:

Ammonium persulfate

Bis:

N,N′-methylenebisacrylamide

EDTA:

Ethylenediaminetetraacetic acid disodium salt dihydrate

LED:

Light-emitting diode

MB:

Methylene blue

PAGE:

Polyacrylamide gel electrophoresis

PMSF:

Phenylmethylsulfonylfluoride

RF:

Riboflavin

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulfate

TEMED:

N,N,N′,N′-tetramethylethylenediamine

Tris:

Tris(hydroxymethyl)aminomethane

References

  1. Magdeldin S (2012) Gel electrophoresis: principles and basics. InTech, Rijeka

    Book  Google Scholar 

  2. Kurien BT, Scofield RH (2019) Electrophoretic separation of proteins. Springer, New York

    Book  Google Scholar 

  3. Westermeier R (2016) Electrophoresis in practice: a guide to methods and applications of DNA and protein separations. Wiley, Freiburg

    Book  Google Scholar 

  4. Lledias F, Hernández F, Rivas V et al (2017) A rapid and reliable method for total protein extraction from succulent plants for proteomic analysis. Protein J 36:308–321

    Article  CAS  Google Scholar 

  5. Iwashita K, Inoue N, Handa A, Shiraki K (2015) Thermal aggregation of hen egg white proteins in the presence of salts. Protein J 34:212–219

    Article  CAS  Google Scholar 

  6. Cassidy L, Kaulich PT, Maaß S et al (2021) Bottom-up and top-down proteomic approaches for the identification, characterization and quantification of the low molecular weight proteome with focus on short open reading frame-encoded peptides. Proteomics. https://doi.org/10.1002/pmic.202100008

    Article  PubMed  Google Scholar 

  7. Sharma N, Sharma R, Rajput YS et al (2020) Separation methods for milk proteins on polyacrylamide gel electrophoresis: critical analysis and options for better resolution. Int Dairy J. https://doi.org/10.1016/j.idairyj.2020.104920

    Article  Google Scholar 

  8. Corbo C, Cevenini A, Salvatore F (2017) Biomarker discovery by proteomics-based approaches for early detection and personalized medicine in colorectal cancer. Proteomics Clin Appl 11:1600072. https://doi.org/10.1002/prca.201600072

    Article  CAS  Google Scholar 

  9. Sobsey CA, Ibrahim S, Richard VR et al (2020) Targeted and untargeted proteomics approaches in biomarker development. Proteomics 20:1900029. https://doi.org/10.1002/pmic.201900029

    Article  CAS  Google Scholar 

  10. Brunelle JL, Green R (2014) Coomassie blue staining. Methods in enzymology. Elsevier, Amsterdam, pp 161–167

    Google Scholar 

  11. Krause RGE, Goldring JPD (2019) Crystal violet stains proteins in SDS–PAGE gels and zymograms. Anal Biochem 566:107–115. https://doi.org/10.1016/j.ab.2018.11.015

    Article  CAS  PubMed  Google Scholar 

  12. Sennakesavan G, Mostakhdemin M, Dkhar LK et al (2020) Acrylic acid/acrylamide based hydrogels and its properties—a review. Polym Degrad Stab 180:109308. https://doi.org/10.1016/j.polymdegradstab.2020.109308

    Article  CAS  Google Scholar 

  13. Righetti PG, Sebastiano R, Citterio A (2013) Capillary electrophoresis and isoelectric focusing in peptide and protein analysis. Proteomics 13:325–340. https://doi.org/10.1002/pmic.201200378

    Article  CAS  PubMed  Google Scholar 

  14. Davis BJ (1964) Disc electrophoresis. II. Method and application to human serum proteins. Ann NY Acad Sci 121:404–427

    Article  CAS  Google Scholar 

  15. Rabilloud T, Vincon M, Garin J (1995) Micropreparative one- and two-dimensional electrophoresis: improvement with new photopolymerization systems. Electrophoresis 16:1414–1422. https://doi.org/10.1002/elps.11501601234

    Article  CAS  PubMed  Google Scholar 

  16. Sheth S, Jain E, Karadaghy A et al (2017) UV dose governs UV-polymerized polyacrylamide hydrogel modulus. Int J Polym Sci. https://doi.org/10.1155/2017/5147482

    Article  Google Scholar 

  17. Mane S, Ponrathnam S, Chavan N (2015) Effect of chemical cross-linking on properties of polymer microbeads: a review. Can Chem Trans 3:473–485. https://doi.org/10.13179/canchemtrans.2015.03.04.0245

    Article  CAS  Google Scholar 

  18. Zarei M, Zarei M, Ghasemabadi M (2017) Nanoparticle improved separations: from capillary to slab gel electrophoresis. TrAC Trends Anal Chem 86:56–74. https://doi.org/10.1016/j.trac.2016.11.004

    Article  CAS  Google Scholar 

  19. Green MR, Sambrook J (2020) Polyacrylamide gel electrophoresis. Cold Spring Harb Protoc 2020:525–532. https://doi.org/10.1101/pdb.prot100412

    Article  Google Scholar 

  20. Allison JH, Agrawal HC, Moore BW (1974) Effect of N,N,N′,N′-tetramethylethylenediamine on the migration of proteins in SDS polyacrylamide gels. Anal Biochem 58:592–601

    Article  CAS  Google Scholar 

  21. Lyubimova T, Caglio S, Gelfi C et al (1993) Photopolymerization of polyacrylamide gels with methylene blue. Electrophoresis 14:40–50. https://doi.org/10.1002/elps.1150140108

    Article  CAS  PubMed  Google Scholar 

  22. Papavassiliou AG (2009) Footprinting DNA-protein interactions in native polyacrylamide gels by chemical nucleolytic activity of 1,10-phenanthroline-copper. In: Moss T, Leblanc B (eds) DNA–protein interactions. Humana Press, Dordrecht, pp 163–199

    Chapter  Google Scholar 

  23. Carbonara K, Coorssen JR (2020) A “green” approach to fixing polyacrylamide gels. Anal Biochem 605:113853. https://doi.org/10.1016/j.ab.2020.113853

    Article  CAS  PubMed  Google Scholar 

  24. Lanigan RS, Yamarik TA (2002) Final report on the safety assessment of EDTA, calcium disodium EDTA, diammonium EDTA, dipotassium EDTA, disodium EDTA, TEA-EDTA, tetrasodium EDTA, tripotassium EDTA, trisodium EDTA, HEDTA, and trisodium HEDTA. Int J Toxicol 21:95–142

    Article  CAS  Google Scholar 

  25. Ferrero ME (2016) Rationale for the successful management of EDTA chelation therapy in human burden by toxic metals. Biomed Res Int. https://doi.org/10.1155/2016/8274504

    Article  PubMed  PubMed Central  Google Scholar 

  26. Suwannasom N, Kao I, PruГџ A et al (2020) Riboflavin: the health benefits of a forgotten natural vitamin. Int J Mol Sci 21:950. https://doi.org/10.3390/ijms21030950

    Article  CAS  PubMed Central  Google Scholar 

  27. Kim E, Kim MH, Song JH et al (2020) Dual crosslinked alginate hydrogels by riboflavin as photoinitiator. Int J Biol Macromol 154:989–998. https://doi.org/10.1016/j.ijbiomac.2020.03.134

    Article  CAS  PubMed  Google Scholar 

  28. Sheraz MA, Kazi SH, Ahmed S et al (2014) Photo, thermal and chemical degradation of riboflavin. Beilstein J Org Chem 10:1999–2012. https://doi.org/10.3762/bjoc.10.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Murray K (1966) The acid extraction of histones from calf thymus deoxyribonucleoprotein. J Mol Biol 15:409–419. https://doi.org/10.1016/S0022-2836(66)80116-X

    Article  CAS  PubMed  Google Scholar 

  30. Shechter D, Dormann HL, Allis CD, Hake SB (2007) Extraction, purification and analysis of histones. Nat Protoc 2:1445–1457. https://doi.org/10.1038/nprot.2007.202

    Article  CAS  PubMed  Google Scholar 

  31. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  32. Aoki T (2017) A comprehensive review of our current understanding of red blood cell (RBC) glycoproteins. Membranes (Basel) 7:56. https://doi.org/10.3390/membranes7040056

    Article  CAS  Google Scholar 

  33. Li Y, Trojer P, Xu C-F et al (2009) The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate. J Biol Chem 284:34283–34295. https://doi.org/10.1074/jbc.M109.034462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hnilica LS (2018) The structure and biological function of histones. CRC Press, Boca Raton

    Book  Google Scholar 

  35. Panyim S, Bilek D, Chalkley R (1971) An electrophoretic comparison of vertebrate histones. J Biol Chem 246:4206–4215. https://doi.org/10.1016/S0021-9258(18)62073-3

    Article  CAS  PubMed  Google Scholar 

  36. Kaur Gill-Sharma M, Choudhuri J, D’Souza S (2011) Sperm chromatin protamination: an endocrine perspective. Protein Pept Lett 18:786–801. https://doi.org/10.2174/092986611795714005

    Article  Google Scholar 

  37. Čabart P, Kalousek I, Jandová D, Hrkal Z (1995) Differential expression of nuclear HMG1, HMG2 proteins and H10 histone in various blood cells. Cell Biochem Funct 13:125–133. https://doi.org/10.1002/cbf.290130209

    Article  PubMed  Google Scholar 

  38. Zhang W, Yuan Z, Huang L et al (2016) Titanium dioxide photocatalytic polymerization of acrylamide for gel electrophoresis (TIP PAGE) of proteins and structural identification by mass spectrometry. Sci Rep 6:20981. https://doi.org/10.1038/srep20981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lavrentieva A (2020) Gradient Hydrogels. In: Lavrentieva A, Pepelanova I, Seliktar D (eds) Tunable hydrogels. Springer, Cham

    Google Scholar 

  40. Majcher MJ, Hoare T (2019) Applications of hydrogels 14. In: Mazumder MAJ, Sheardown H, Al-Ahmed A (eds) Functional biopolymers. Springer Nature, Cham, pp 453–490

    Chapter  Google Scholar 

  41. Vandekerckhove J, Bauw G, Van Den Bulcke M et al (1990) Electroblotting: a method for protein purification for NH2-terminal and internal microsequencing. In: Fini C, Floridi A, Finelli VN, Wittman-Liebold B (eds) Laboratory methodology in biochemistry. CRC Press, Boca Raton, pp 217–238

    Google Scholar 

  42. Schägger H (2006) Tricine–SDS–PAGE. Nat Protoc 1:16–22

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the complex interdisciplinary research program of NAS of Ukraine, Projects # 0117U004977.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena Samoylenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyakhovenko, V., Samoylenko, O. Photopolymerization with EDTA and Riboflavin for Proteins Analysis in Polyacrylamide Gel Electrophoresis. Protein J 41, 438–443 (2022). https://doi.org/10.1007/s10930-022-10068-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-022-10068-3

Keywords

Navigation