Skip to main content
Log in

Biophysical and Computational Approaches to Unravel pH-Dependent Conformational Change of PspA Assist PspA-PspF Complex Formation in Yersinia enterocolitica

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

In enteropathogen, Yersinia enterocolitica, the genes encoding phage shock proteins are organized in an operon (pspA-E), which is activated at the various types of cellular stress (i.e., extracytoplasmic or envelop stress) whereas, PspA negatively regulates PspF, a transcriptional activator of pspA-E and pspG, and is also involved in other cellular machinery maintenance processes. The exact mechanism of association and dissociation of PspA and PspF during the stress response is not entirely clear. In this concern, we address conformational change of PspA in different pH conditions using various in-silico and biophysical methods. At the near-neutral pH, CD and FTIR measurements reveal a ß-like conformational change of PspA; however, AFM measurement indicates the lower oligomeric form at the above-mentioned pH. Additionally, the results of the MD simulation also support the conformational changes which indicate salt-bridge strength takes an intermediate position compared to other pHs. Furthermore, the bio-layer interferometry study confirms the stable complex formation that takes place between PspA and PspF at the near-neutral pH. It, thus, appears that PspA conformational change in adverse pH conditions abandons PspF from having a stable complex with it, and thus, the latter can act as a trans-activator. Taken together, it seems that PspA alone can transduce adverse signals by changing its conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PspA:

Phage shock protein A

PspF:

Phage shock protein F

CD:

Circular dichrorism

FTIR:

Fourier transform infrared spectroscopy

BLI:

Bio-layer interferometry

SB:

Salt-bridge

References

  1. Osadnik H, Schopfel M, Heidrich E, Mehner D, Lilie H, Parthier C, Risselada HJ, Grubmuller H, Stubbs MT, Bruser T (2015) PspF-binding domain PspA1–144 and the PspA.F complex: New insights into the coiled-coil-dependent regulation of AAA+ proteins. Mol Microbiol 98:743–759

    Article  CAS  PubMed  Google Scholar 

  2. Brissette JL, Weiner L, Ripmaster TL, Model P (1991) Characterization and sequence of the Escherichia coli stress-induced psp operon. J Mol Biol 220:35–48

    Article  CAS  PubMed  Google Scholar 

  3. Dworkin J, Jovanovic G, Model P (2000) The PspA protein of Escherichia coli is a negative regulator of sigma(54)-dependent transcription. J Bacteriol 182:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Joly N, Burrows PC, Engl C, Jovanovic G, Buck M (2009) A lower-order oligomer form of phage shock protein A (PspA) stably associates with the hexameric AAA(+) transcription activator protein PspF for negative regulation. J Mol Biol 394:764–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Srivastava D, Moumene A, Flores-Kim J, Darwin AJ (2017) Psp stress response proteins form a complex with mislocalized secretins in the Yersinia enterocolitica cytoplasmic membrane. mBio 8:e01088-17

    Article  PubMed  PubMed Central  Google Scholar 

  6. Adams H, Teertstra W, Demmers J, Boesten R, Tommassen J (2003) Interactions between phage-shock proteins in Escherichia coli. J Bacteriol 185:1174–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Engl C, Jovanovic G, Lloyd LJ, Murray H, Spitaler M, Ying L, Errington J, Buck M (2009) In vivo localizations of membrane stress controllers PspA and PspG in Escherichia coli. Mol Microbiol 73:382–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hankamer BD, Elderkin SL, Buck M, Nield J (2004) Organization of the AAA(+) adaptor protein PspA is an oligomeric ring. J Biol Chem 279:8862–8866

    Article  CAS  PubMed  Google Scholar 

  9. Darwin AJ, Miller VL (2001) The psp locus of Yersinia enterocolitica is required for virulence and for growth in vitro when the Ysc type III secretion system is produced. Mol Microbiol 39:429–444

    Article  CAS  PubMed  Google Scholar 

  10. Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC (2003) Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47:103–118

    Article  CAS  PubMed  Google Scholar 

  11. Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Haagensen JA, Molin S, Prensier G, Arbeille B, Ghigo JM (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–674

    Article  CAS  PubMed  Google Scholar 

  12. Flores-Kim J, Darwin AJ (2016) The phage shock protein response. Annu Rev Microbiol 70:83–101

    Article  CAS  PubMed  Google Scholar 

  13. Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, Stumpf MP, Buck M (2010) Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 34:797–827

    Article  CAS  PubMed  Google Scholar 

  14. Yamaguchi S, Gueguen E, Horstman NK, Darwin AJ (2010) Membrane association of PspA depends on activation of the phage-shock-protein response in Yersinia enterocolitica. Mol Microbiol 78:429–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamaguchi S, Reid DA, Rothenberg E, Darwin AJ (2013) Changes in Psp protein binding partners, localization and behaviour upon activation of the Yersinia enterocolitica phage shock protein response. Mol Microbiol 87:656–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Southern SJ, Male A, Milne T, Sarkar-Tyson M, Tavassoli A, Oyston PC (2015) Evaluating the role of phage-shock protein A in Burkholderia pseudomallei. Microbiology (Reading) 161:2192–2203

    Article  CAS  Google Scholar 

  17. Weiner L, Model P (1994) Role of an Escherichia coli stress-response operon in stationary-phase survival. Proc Natl Acad Sci USA 91:2191–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chambers TJ, Hahn CS, Galler R, Rice CM (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688

    Article  CAS  PubMed  Google Scholar 

  19. Williams RW, Chang A, Juretic D, Loughran S (1987) Secondary structure predictions and medium range interactions. Biochim Biophys Acta 916:200–204

    Article  CAS  PubMed  Google Scholar 

  20. Hennig R, West A, Debus M, Saur M, Markl J, Sachs JN, Schneider D (1858) The IM30/Vipp1 C-terminus associates with the lipid bilayer and modulates membrane fusion. Biochim Biophys Acta Bioenerg 2017:126–136

    Google Scholar 

  21. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  22. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27–38

    Google Scholar 

  24. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108–4116

    Article  CAS  PubMed  Google Scholar 

  26. B.J.A.C. Franck, Optical Circular Dichroism. Principles, Measurements, and Applications. Von L. Velluz, M. Legrand und M. Grosjean, übers. von J. MacCordick. Verlag Chemie GmbH., Weinheim/Bergstr., und Academic Press, New York‐London, 1965. XII, 247 S., 149 Abb., 10 Tab., geb. DM 40.–, 77 (1965) 875–875.

  27. Joshi V, Shivach T, Yadav N, Rathore AS (2014) Circular dichroism spectroscopy as a tool for monitoring aggregation in monoclonal antibody therapeutics. Anal Chem 86:11606–11613

    Article  CAS  PubMed  Google Scholar 

  28. Louis-Jeune C, Andrade-Navarro MA, Perez-Iratxeta C (2012) Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 80:374–381

    Article  CAS  PubMed  Google Scholar 

  29. Nevskaya NA, Chirgadze YN (1976) Infrared spectra and resonance interactions of amide-I and II vibration of alpha-helix. Biopolymers 15:637–648

    Article  CAS  PubMed  Google Scholar 

  30. Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem 38:181–364

    Article  CAS  PubMed  Google Scholar 

  31. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665-667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Banerjee S, Gupta PSS, Islam RNU, Bandyopadhyay AK (2021) Intrinsic basis of thermostability of prolyl oligopeptidase from Pyrococcus furiosus. Sci Rep 11:11553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nayek A, Sen Gupta PS, Banerjee S, Mondal B, Bandyopadhyay AK (2014) Salt-bridge energetics in halophilic proteins. PLoS One 9:e93862

    Article  PubMed  PubMed Central  Google Scholar 

  35. Roy C, Kumar R, Datta S (2020) Comparative studies on ion-pair energetic, distribution among three domains of life: Archaea, eubacteria, and eukarya. Proteins 88:865–873

    Article  CAS  PubMed  Google Scholar 

  36. Bandyopadhyay AK, Islam RNU, Mitra D, Banerjee S, Goswami A (2019) Stability of buried and networked salt-bridges (BNSB)in thermophilic proteins. Bioinformation 15:61–67

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen J, Sawyer N, Regan L (2013) Protein-protein interactions: general trends in the relationship between binding affinity and interfacial buried surface area. Protein Sci 22:510–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  CAS  PubMed  Google Scholar 

  39. Lopes JL, Miles AJ, Whitmore L, Wallace BA (2014) Distinct circular dichroism spectroscopic signatures of polyproline II and unordered secondary structures: applications in secondary structure analyses. Protein Sci 23:1765–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Junglas B, Huber ST, Heidler T, Schlosser L, Mann D, Hennig R, Clarke M, Hellmann N, Schneider D, Sachse C (2021) PspA adopts an ESCRT-III-like fold and remodels bacterial membranes. Cell 184:3674–3688

    Article  CAS  PubMed  Google Scholar 

  41. Mehta P, Jovanovic G, Lenn T, Bruckbauer A, Engl C, Ying L, Buck M (2013) Dynamics and stoichiometry of a regulated enhancer-binding protein in live Escherichia coli cells. Nat Commun 4:1997

    Article  PubMed  CAS  Google Scholar 

  42. Heinig M, Frishman D (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32:W500-502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Widłak W (2013) Protein structure and function. In: Widłak W (ed) Molecular biology: not only for bioinformaticians. Springer, Berlin, pp 15–29

    Chapter  Google Scholar 

  44. Heidrich ES, Bruser T (2018) Evidence for a second regulatory binding site on PspF that is occupied by the C-terminal domain of PspA. PLoS ONE 13:e0198564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumen Datta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary materials

The supplementary material contains 11 Tables and 7 Figures. Table S1 contains the scores for models of PspF and PspA obtained using various online tools. Table S2 contain the percentile of alpha, beta, and other conformer of PspA at various pH. Table S3 has deconvoluted Amide I band frequencies and assignments of the secondary structure of PspA at different pH solution and Table S4 contain the binding kinetics of PspA and PspF. Table S5-10 contain component and net SB energy terms along with accessible surface area and a list of weak interactions has been shown in table S11. In figure, S1 shows near UV CD spectra of PspA, PspF, and PspA-PspF complex. Figure S2 shows the deconvolution of FTIR spectra of PspA at different pH. S3 shows CD spectra of PspF. Fig. S4 has Kye-Dollite hydrophobicity analysis of PspA and PspF, Fig. S5 shows the interaction between PspF-His with Ni-NTA at different pH. In Fig. S6 and S7, plot RMSD and H-bond interaction respectively. (DOC 3252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, C., Kumar, R., Hossain, M.M. et al. Biophysical and Computational Approaches to Unravel pH-Dependent Conformational Change of PspA Assist PspA-PspF Complex Formation in Yersinia enterocolitica. Protein J 41, 403–413 (2022). https://doi.org/10.1007/s10930-022-10061-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-022-10061-w

Keywords

Navigation