Skip to main content
Log in

Comparison of Periplasmic and Cytoplasmic Expression of Bovine Enterokinase Light Chain in E. coli

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Enterokinase enzyme is widely used in production of recombinant proteins. This enzyme is isolated from the intestine and recognizes a specific cleavage site (X↓LYS-ASP4). Several studies have been performed to produce recombinant active enterokinase. In this study, the coding sequence of bovine enteropeptidase light chain (bEKL) was isolated from Iranian Sarabi cattle and its expression was investigated in the periplasm and cytoplasm of E. coli by two different expression vectors, pET22 and pET32RH. RNA was extracted from the duodenum part of cattle, cDNA was amplified, the enterokinase light chain coding fragment was cloned and the expression was examined by SDS-PAGE analysis. The higher amounts of soluble enterokinase as a fusion with thioredoxin (Trx) were detected in cytoplasmic expression. The functional enterokinase was purified with a yield of 45 mg per litter by two-steps Ni2+ affinity chromatography. The effective activity of the enzyme implies that it can be produced in large scale for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kosobokova EN, Skrypnik KA, Kosorukov VS (2016) Overview of fusion tags for recombinant proteins. Biochemistry 81:187–200

    CAS  PubMed  Google Scholar 

  2. Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7:620–634

    Article  CAS  Google Scholar 

  3. Arnau J, Lauritzen C, Petersen GE, Pedersen J (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Exp Purif 48:1–13

    Article  CAS  Google Scholar 

  4. Waugh DS (2011) An overview of enzymatic reagents for the removal of affinity tags. Pro Expr Purif 80:283–293. https://doi.org/10.1016/j.pep.2011.08.005

    Article  CAS  Google Scholar 

  5. Zheng XL, Kitamoto Y, Sadler JE (2009) Enteropeptidase, a type II transmembrane serine protease. Front Biosci 1:242–249

    Google Scholar 

  6. Eggermont E, Molla AM, Tytgat G, Rutgeerts L (1971) Distribution of enterokinase activity in the human intestine. Acta Gastroent Belg 34:655–662

    CAS  PubMed  Google Scholar 

  7. Gasparian ME, Ostapchenko VG, Dolgikh DA, Kirpichnikov MP (2006) Biochemical characterization of human enteropeptidase light chain. Biochemistry 71:113–119

    CAS  PubMed  Google Scholar 

  8. Mikhailova AG, Rumsh LD (1999) Autolysis of bovine enteropeptidase heavy chain: evidence of fragment 118-465 involvement in trypsinogen activation. FEBS Lett 442:226–230

    Article  CAS  Google Scholar 

  9. Niu L, Li J, Ji X, Yang B (2015) Efficient expression and purification of recombinant human enteropeptidase light chain in Escherichia coli. Braz Arch Biotechnol 2:216–221

    Google Scholar 

  10. Gasparian ME, Ostapchenko VG, Schulga AA, Dolgikh DA, Kirpichnikov MP (2003) Expression, purification, and characterization of human enteropeptidase catalytic subunit in Escherichia coli. Prot Exp Purif 31(1):133–139

    Article  CAS  Google Scholar 

  11. Collins-Racie LA, McColgan JM, Grant KL (1995) Production of recombinant bovine enterokinase catalytic subunit in Escherichia coli using the novel secretory fusion partner DsbA. J Biotechnol 13:982–987. https://doi.org/10.1038/nbt0995-982

    Article  CAS  Google Scholar 

  12. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:1–17

    Article  Google Scholar 

  13. Rezaei L, Ayat H, Ahadi AM (2021) Design and construction of pET32b(+) Rh expression vector based on pET system to facilitate purification. J Cell Mol Res 34(2):169–181

    Google Scholar 

  14. Costa S, Almeida A, Castro A, Domingues L (2014) Fusion tags for protein solubility, purification, and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 5(63):1–20. https://doi.org/10.3389/fmicb.2014.00063

    Article  CAS  Google Scholar 

  15. Marco A (2009). Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli, Microbial Cell Factories, 8(26): 1–18.

    Google Scholar 

  16. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–524

    Article  CAS  Google Scholar 

  17. Tan H, Wang J, Zhao Z (2007) Purification and refolding optimization of recombinant bovine enterokinase light chain overexpressed in Escherichia coli. Prot Exp Purif 56:40–47

    Article  CAS  Google Scholar 

  18. Simeonov P, Berger-Hoffmann R, Hoffmann R, Stra¨ter N, Zuchner T (2011) Surface supercharged human enteropeptidase light chain shows improved solubility and refolding yield. Protein Eng Des Sel 24(3):261–268

    Article  CAS  Google Scholar 

  19. Fang L, Sun Q, Hua Z (2004) Expression of recombinant Chinese bovine enterokinase catalytic subunit in P. pastoris and its purification and characterization. Acta Biochim Biophys Sinica 36(7):513–517. https://doi.org/10.1093/abbs/36.7.513

    Article  CAS  Google Scholar 

  20. Kim HJ, Kim YH, Roh YH, Seong BL, Shin CS (2005) Optimization of enterokinase fermentation using a recombinant Saccharomyces cerevisiae. Process Biochem 40:717–722

    Article  CAS  Google Scholar 

  21. Svetina M, Krasevec N, Gaberc-Porekar V, Komel R (2000) Expression of catalytic subunit of bovine enterokinase in the filamentous fungus Aspergillus niger. J Biotechnol 76:245–251

    Article  CAS  Google Scholar 

  22. Pepeliaev S, Krahulec J, Cerný Z, Jílková J, Tlustá M, Dostálová J (2011) High level expression of human enteropeptidase light chain in Pichia pastoris. J Biotechnol 156(1):67–75. https://doi.org/10.1016/j.jbiotec.2011.08.017

    Article  CAS  PubMed  Google Scholar 

  23. Melicherová K, Krahulec J, Šafránek M et al (2017) Optimization of the fermentation and downstream processes for human enterokinase production in Pichia pastoris. Appl Microbiol Biotechnol 101:1927–1934. https://doi.org/10.1007/s00253-016-7960-3P10

    Article  PubMed  Google Scholar 

  24. Tripathi N, Shrivastava A (2019) Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Front Bioeng Biotechnol 7:1–35. https://doi.org/10.3389/fbioe.2019.00420

    Article  CAS  Google Scholar 

  25. Huang L, Ruan H, Gu W, Xu Z, Cen P, Fan L (2007) Functional expression and purification of bovine enterokinase light chain in recombinant Escherichia coli. Prep Biochem Biotechnol 37:205–217

    Article  CAS  Google Scholar 

  26. Yuan L, Hua Z (2002) Expression, purification, and characterization of a biologically active bovine enterokinase catalytic subunit in Escherichia coli. Prot Expr Purif 25:300–304

    Article  CAS  Google Scholar 

  27. Sandomenico A, Sivaccumar JP, Ruvo M (2020) Evolution of Escherichia coli expression system in producing antibody recombinant fragments. Int J Mol Sci 21(6324):1–39

    Google Scholar 

  28. Dehghan Z, Ayat H, Ahadi AM (2020) Expression, purification and docking studies on IMe-AGAP, the first antitumor-analgesic like peptide from Iranian Scorpion Mesobuthus eupeus. Iran J Pharm Sci 19(3):206–216

    CAS  Google Scholar 

  29. Abbas A, Plattner S, Hussain Shah K, Bohlmann H (2013) Comparison of periplasmic and intracellular expression of Arabidopsis thionin proproteins in E. coli. Biotechnol Lett 35:1085–1091

    Article  CAS  Google Scholar 

  30. LaVallie ER, Rehemtulla A, Racie LA, DiBlasio EA, Ferenz C, Grant KL, Light A, McCoy JM (1993) Cloning and functional expression of a cDNA encoding the catalytic subunit of bovine Enterokinase. J Biol Chem 31:23311–23317. https://doi.org/10.1016/S0021-9258(19)49464-7

    Article  Google Scholar 

  31. Song HW, Choi S, Seong BL (2002) Engineered recombinant enteropeptidase catalytic subunit: effect of N-terminal modification. Biochim Biophys Acta 400:1–6. https://doi.org/10.1006/abbi.2001.2737

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Shahrekord University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoda Ayat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayat, H., Darvishi, O., Moazeni, E. et al. Comparison of Periplasmic and Cytoplasmic Expression of Bovine Enterokinase Light Chain in E. coli. Protein J 41, 157–165 (2022). https://doi.org/10.1007/s10930-021-10033-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-10033-6

Keywords

Navigation