Skip to main content

Advertisement

Log in

ABC Exporters in Pathogenesis: Role of Synthetic Anti-Microbial Peptides

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

ABC exporters are involved in diverse cellular processes including lipid trafficking, drug resistance, pathogenesis etc. The greatest thrust has been in the area of drug resistance that explains the underlying well-crafted canonical architecture of its structure. Interestingly, ranging from structural organisation to subsequent design and delivery aspects lays the niche of antimicrobial peptides. One of the major highlight of this paper is the role of synthetic antimicrobial peptides in current scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ABC:

ATP binding cassette

ALD:

Adrenoleukodystrophy

AMPs:

Antimicrobial peptides

CFTR:

Cystic fibrosis transmembrane conductance regulator

MATE:

Multidrug and toxin compound extrusion

MDR:

Multi drug resistance

MFS:

Major facilitator superfamily

MMP7:

Matrix metalloproteinase 7

NBD:

Nucleotide binding domain

OABP:

Organic anion binding protein

PACE:

Proteobacterial antimicrobial compound efflux

PXE:

Pseudoxanthoma elasticum

RND:

Resistance nodulation division

SMR:

Small multidrug resistance

SUR:

Sulfonylurea receptor

TAP:

Transporters associated with antigen processing

TMD:

Transmembrane domain

TMH:

Transmembrane helices

References

  1. Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:119

    Article  CAS  Google Scholar 

  2. Piddock LJV (2006) Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro1464

    Article  PubMed  Google Scholar 

  3. Tanwar J, Das S, Fatima Z et al (2014) Multidrug resistance: an emerging crisis, multidrug resistance: an emerging crisis. Interdiscipl Perspect Infect Dis Interdiscipl Perspect Infect Dis 2014:e541340. https://doi.org/10.1155/2014/541340

    Article  CAS  Google Scholar 

  4. Kabra R, Chauhan N, Kumar A et al (2019) Efflux pumps and antimicrobial resistance: paradoxical components in systems genomics. Prog Biophys Mol Biol 141:15–24. https://doi.org/10.1016/j.pbiomolbio.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  5. Choi Y, Yu A-M (2014) ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des. https://doi.org/10.2174/138161282005140214165212

    Article  PubMed  PubMed Central  Google Scholar 

  6. Palmeira A, Sousa E, Vasconcelos MH, Pinto M (2012) Three decades of P-gp inhibitors: skimming through several generations and scaffolds. Curr Med Chem 19:1946–2025. https://doi.org/10.2174/092986712800167392

    Article  CAS  PubMed  Google Scholar 

  7. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575. https://doi.org/10.3390/ph6121543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Daleke DL (2003) Regulation of transbilayer plasma membrane phospholipid asymmetry. J Lipid Res 44:233

    Article  CAS  Google Scholar 

  9. Contreras FX, Sánchez-Magraner L, Alonso A, Goñi FM (2010) Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett 584:1779

    Article  CAS  Google Scholar 

  10. Locher KP (2016) Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 23:487–493. https://doi.org/10.1038/nsmb.3216

    Article  CAS  PubMed  Google Scholar 

  11. Seeger MA, van Veen HW (2009) Molecular basis of multidrug transport by ABC transporters. Biochim Biophys Acta Proteins Proteomics 1794:725–737. https://doi.org/10.1016/j.bbapap.2008.12.004

    Article  CAS  Google Scholar 

  12. Yates B, Braschi B, Gray KA et al (2017) Genenames.org: the HGNC and VGNC resources in 2017. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw1033

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dean M, Hamon Y, Chimini G (2001) The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 42:1007

    CAS  PubMed  Google Scholar 

  14. Vasiliou V, Vasiliou K, Nebert DW (2009) Human ATP-binding cassette (ABC) transporter family. Hum Genomics 3:281–290

    Article  CAS  Google Scholar 

  15. Jassal B, Matthews L, Viteri G et al (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48:D498–D503. https://doi.org/10.1093/nar/gkz1031

    Article  CAS  PubMed  Google Scholar 

  16. Uhlen M, Fagerberg L, Hallstrom BM et al (2015) Tissue-based map of the human proteome. Science 347:1260419–1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  17. Stelzer G, Rosen N, Plaschkes I et al (2016) The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinform. https://doi.org/10.1002/cpbi.5

    Article  Google Scholar 

  18. Van Veen HW, Margolles A, Müller M et al (2000) The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J. https://doi.org/10.1093/emboj/19.11.2503

    Article  PubMed  PubMed Central  Google Scholar 

  19. Štefková J, Poledne R, Ek JAHČ (2004) ATP-binding cassette (ABC) transporters in human metabolism and diseases. Physiol Res 53:235–243

    PubMed  Google Scholar 

  20. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218

    Article  CAS  Google Scholar 

  21. Oswald C, Holland IB, Schmitt L (2006) The motor domains of ABC-transporters: what can structures tell us? Naunyn Schmiedebergs Arch Pharmacol 372:385

    Article  CAS  Google Scholar 

  22. Higgins CF, Linton KJ (2004) The ATP switch model for ABC transporters. Nat Struct Mol Biol 11:918

    Article  CAS  Google Scholar 

  23. Zoghbi ME, Krishnan S, Altenberg GA (2012) Dissociation of ATP-binding cassette nucleotide-binding domain dimers into monomers during the hydrolysis cycle. J Biol Chem. https://doi.org/10.1074/jbc.M112.340281

    Article  PubMed  PubMed Central  Google Scholar 

  24. López-Marqués RL, Poulsen LR, Bailly A et al (2015) Structure and mechanism of ATP-dependent phospholipid transporters. Biochim Biophys Acta Gen Subj 1850:461–475. https://doi.org/10.1016/j.bbagen.2014.04.008

    Article  CAS  Google Scholar 

  25. Hohl M, Briand C, Grütter MG, Seeger MA (2012) Crystal structure of a heterodimeric ABC transporter in its inward-facing conformation. Nat Struct Mol Biol. https://doi.org/10.1038/nsmb.2267

    Article  PubMed  Google Scholar 

  26. George AM, Jones PM (2012) Perspectives on the structure-function of ABC transporters: the switch and constant contact models. Prog Biophys Mol Biol 109:95–107. https://doi.org/10.1016/j.pbiomolbio.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  27. Zhao X, Wu H, Lu H et al (2013) LAMP: a database linking antimicrobial peptides. PLoS ONE. https://doi.org/10.1371/journal.pone.0066557

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ye G, Wu H, Huang J et al (2020) LAMP2: a major update of the database linking antimicrobial peptides. Database (Oxford). https://doi.org/10.1093/database/baaa061

    Article  PubMed Central  Google Scholar 

  29. Dubos RJ (1939a) Studies on a bactericidal agent extracted from a soil bacillus: I. Preparation of the agent. Its activity in vitro. J Exp Med. https://doi.org/10.1084/jem.70.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dubos RJ (1939b) Studies on a bactericidal agent extracted from a soil bacillus: II. Protective effect of the bactericidal agent against experimental pieuococcus infections in mice. J Exp Med. https://doi.org/10.1084/jem.70.1.11

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hotchkiss RD, Dubos RJ (1940) Fractionation of the bactericidal agent from cultures of a soil bacillus. J Biol Chem 132:791

    CAS  Google Scholar 

  32. Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Cur Issues Mo Biol 7:179

    CAS  Google Scholar 

  33. Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol. https://doi.org/10.1189/jlb.0403147

    Article  PubMed  Google Scholar 

  34. Murakami M, Lopez-Garcia B, Braff M et al (2004) Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol. https://doi.org/10.4049/jimmunol.172.5.3070

    Article  PubMed  Google Scholar 

  35. Zhang LJ, Gallo RL (2016) Antimicrobial peptides. Curr Biol 26:R14

    Article  CAS  Google Scholar 

  36. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141

    Article  CAS  Google Scholar 

  37. Radek K, Gallo R (2007) Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol 29:27–43

    Article  CAS  Google Scholar 

  38. Yang L, Harroun TA, Weiss TM et al (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J. https://doi.org/10.1016/S0006-3495(01)75802-X

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238

    Article  CAS  Google Scholar 

  40. Ladokhin AS, White SH (2001) “Detergent-like” permeabilization of anionic lipid vesicles by melittin. Biochim Biophys Acta Biomembr. https://doi.org/10.1016/S0005-2736(01)00382-0

    Article  Google Scholar 

  41. Xiao H, Shao F, Wu M et al (2015) The application of antimicrobial peptides as growth and health promoters for swine. J Anim Sci Biotechnol 6:1–6

    Article  Google Scholar 

  42. Ludtke S, He K, Huang H (1995) Membrane thinning caused by magainin 2+. Biochemistry. https://doi.org/10.1021/bi00051a026

    Article  PubMed  Google Scholar 

  43. Mecke A, Lee DK, Ramamoorthy A et al (2005) Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. Biophys J. https://doi.org/10.1529/biophysj.105.062596

    Article  PubMed  PubMed Central  Google Scholar 

  44. Madani F, Lindberg S, Langel U et al (2011) Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729

    Article  Google Scholar 

  45. Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  CAS  Google Scholar 

  46. Melo MN, Ferre R, Castanho MARB (2009) Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro2095

    Article  PubMed  Google Scholar 

  47. Brumfitt W (2002) Nisin, alone and combined with peptidoglycan-modulating antibiotics: activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J Antimicrob Chemother 50:731–734. https://doi.org/10.1093/jac/dkf190

    Article  CAS  PubMed  Google Scholar 

  48. Alberola J, Rodríguez A, Francino O et al (2004) Safety and efficacy of antimicrobial peptides against naturally acquired leishmaniasis safety and efficacy of antimicrobial peptides against naturally acquired leishmaniasis. Antimicrob Agents Chemother 48:2–5. https://doi.org/10.1128/AAC.48.2.641

    Article  Google Scholar 

  49. Pérez-Cordero JJ, Lozano JM, Cortés J, Delgado G (2011) Leishmanicidal activity of synthetic antimicrobial peptides in an infection model with human dendritic cells. Peptides 32:683–690. https://doi.org/10.1016/j.peptides.2011.01.011

    Article  CAS  PubMed  Google Scholar 

  50. Nagarajan D, Nagarajan T, Roy N et al (2018) Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. J Biol Chem 293:3492–3509. https://doi.org/10.1074/jbc.M117.805499

    Article  CAS  PubMed  Google Scholar 

  51. Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38:217

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kumar P, Kizhakkedathu JN, Straus SK (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8:4

    Article  Google Scholar 

  53. Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun. https://doi.org/10.1006/bbrc.1998.8159

    Article  PubMed  Google Scholar 

  54. Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett. https://doi.org/10.1016/S0378-1097(98)00008-1

    Article  PubMed  Google Scholar 

  55. Sharma H, Nagaraj R (2015) Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity. PLoS ONE. https://doi.org/10.1371/journal.pone.0119525

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lehrer RI, Barton A, Daher KA et al (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest. https://doi.org/10.1172/JCI114198

    Article  PubMed  PubMed Central  Google Scholar 

  57. Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun. https://doi.org/10.1128/iai.61.7.2978-2984.1993

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lele DS, Talat S, Kumari S et al (2015) Understanding the importance of glycosylated threonine and stereospecific action of Drosocin, a Proline rich antimicrobial peptide. Eur J Med Chem. https://doi.org/10.1016/j.ejmech.2015.01.032

    Article  PubMed  Google Scholar 

  59. Kaur K, Kaur P, Mittal A et al (2017) Design and molecular docking studies of novel antimicrobial peptides using autodock molecular docking software. Asian J Pharm Clin Res 10:28. https://doi.org/10.22159/ajpcr.2017.v10s4.21332

    Article  CAS  Google Scholar 

  60. Ong ZY, Wiradharma N, Yang YY (2014) Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials ☆. Adv Drug Deliv Rev 78:28–45. https://doi.org/10.1016/j.addr.2014.10.013

    Article  CAS  PubMed  Google Scholar 

  61. Zasloff M, Martin B, Chen HC (1988) Antimicrobial activity of synthetic magainin peptides and several analogues. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.85.3.910

    Article  PubMed  Google Scholar 

  62. Oren Z, Lerman JC, Gudmundsson GH et al (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J. https://doi.org/10.1042/0264-6021:3410501

    Article  PubMed  PubMed Central  Google Scholar 

  63. Dathe M, Nikolenko H, Klose J, Bienert M (2004) Cyclization increases the antimicrobial activity and selectivity of arginine- and tryptophan-containing hexapeptides. Biochemistry. https://doi.org/10.1021/bi035948v

    Article  PubMed  Google Scholar 

  64. Molhoek EM, Van Dijk A, Veldhuizen EJA et al (2011) Improved proteolytic stability of chicken cathelicidin-2 derived peptides by d-amino acid substitutions and cyclization. Peptides. https://doi.org/10.1016/j.peptides.2011.02.017

    Article  PubMed  Google Scholar 

  65. Chan LY, Zhang VM, Huang YH et al (2013) Cyclization of the antimicrobial peptide gomesin with native chemical ligation: influences on stability and bioactivity. ChemBioChem. https://doi.org/10.1002/cbic.201300034

    Article  PubMed  PubMed Central  Google Scholar 

  66. Boman HG, Wade D, Boman IA et al (1989) Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett 259:103–106. https://doi.org/10.1016/0014-5793(89)81505-4

    Article  CAS  PubMed  Google Scholar 

  67. Liu YF, Xia X, Xu L, Wang YZ (2013) Design of hybrid β-hairpin peptides with enhanced cell specificity and potent anti-inflammatory activity. Biomaterials. https://doi.org/10.1016/j.biomaterials.2012.09.032

    Article  PubMed  PubMed Central  Google Scholar 

  68. Giuliani A, Rinaldi AC (2011) Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell Mol Life Sci 68:2255

    Article  CAS  Google Scholar 

  69. Zhang L, Benz R, Hancock REW (1999) Influence of proline residues on the antibacterial and synergistic activities of α-helical peptides. Biochemistry. https://doi.org/10.1021/bi9904104

    Article  PubMed  Google Scholar 

  70. Kim JY, Park SC, Yoon MY et al (2011) C-terminal amidation of PMAP-23: translocation to the inner membrane of Gram-negative bacteria. Amino Acids. https://doi.org/10.1007/s00726-010-0632-1

    Article  PubMed  Google Scholar 

  71. Gupta M, Chauhan VS (2011) De novo design of α, β-didehydrophenylalanine containing peptides: from models to applications. Biopolymers. https://doi.org/10.1002/bip.21561

    Article  PubMed  Google Scholar 

  72. Jiang Z, Vasil A, Vasil M, Hodges R (2014) “Specificity determinants” improve therapeutic indices of two antimicrobial peptides piscidin 1 and dermaseptin S4 against the gram-negative pathogens Acinetobacter baumannii and Pseudomonas aeruginosa. Pharmaceuticals 7:366–391. https://doi.org/10.3390/ph7040366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu Z, Brady A, Young A et al (2007) Length effects in antimicrobial peptides of the (RW)n series. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00828-06

    Article  PubMed  PubMed Central  Google Scholar 

  74. Strøm MB, Rekdal Ø, Svendsen JS (2002) Antimicrobial activity of short arginine- and trytophan-rich peptides. J Pept Sci. https://doi.org/10.1002/psc.398

    Article  PubMed  Google Scholar 

  75. Strøm MB, Haug BE, Skar ML et al (2003) The pharmacophore of short cationic antibacterial peptides. J Med Chem. https://doi.org/10.1021/jm0340039

    Article  PubMed  Google Scholar 

  76. Wiradharma N, Sng MYS, Khan M et al (2013) Rationally designed α-helical broad-spectrum antimicrobial peptides with idealized facial amphiphilicity. Macromol Rapid Commun. https://doi.org/10.1002/marc.201200534

    Article  PubMed  Google Scholar 

  77. Deslouches B, Phadke SM, Lazarevic V et al (2005) De novo generation of cationic antimicrobial peptides: Influence of length and tryptophan substitution on antimicrobial activity. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.49.1.316-322.2005

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rekdal Ø, Haug BE, Kalaaji M et al (2012) Relative spatial positions of tryptophan and cationic residues in helical membrane-active peptides determine their cytotoxicity. J Biol Chem. https://doi.org/10.1074/jbc.M111.279281

    Article  PubMed  Google Scholar 

  79. Mant CT, Jiang Z, Gera L et al (2019) De Novo designed amphipathic α-helical antimicrobial peptides incorporating dab and dap residues on the polar face to treat the gram-negative pathogen, Acinetobacter baumannii. J Med Chem. https://doi.org/10.1021/acs.jmedchem.8b01785

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nilsson AC, Janson H, Wold H et al (2015) LTX-109 is a novel agent for nasal decolonization of methicillin-resistant and -sensitive Staphylococcus aureus. Antimicrob Agents Chemother 59:145–151. https://doi.org/10.1128/AAC.03513-14

    Article  CAS  PubMed  Google Scholar 

  81. Isaksson J, Brandsdal BO, Engqvist M et al (2011) A Synthetic antimicrobial peptidomimetic (LTX 109): stereochemical impact on membrane disruption. J Med Chem 54:5786–5795. https://doi.org/10.1021/jm200450h

    Article  CAS  PubMed  Google Scholar 

  82. Kabra R, Ingale P, Singh S (2020) Computationally designed synthetic peptides for transporter proteins imparts allostericity in Miltefosine resistant L. major. Biochem J 477:2007–2026. https://doi.org/10.1042/BCJ20200176

    Article  PubMed  Google Scholar 

Download references

Funding

Funding was provided by Department of Biotechnology, Ministry of Science and Technology (Grant No. Intramural), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailza Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabra, R., Singh, S. ABC Exporters in Pathogenesis: Role of Synthetic Anti-Microbial Peptides. Protein J 39, 657–670 (2020). https://doi.org/10.1007/s10930-020-09931-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09931-y

Keywords

Navigation