Skip to main content
Log in

CxxC Zinc Finger Protein Derived Peptide, MF18 Functions Against Biofilm Formation

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The major threat in modern medicine was biofilm forming bacterial related infections and they were highly tolerant to conventional antibiotics and a boundless demand for new drugs. In this regard, antimicrobial peptide (AMP) have been considered as potential alternative agents to conventional antibiotics. In this study, we have reported a CxxC zinc finger protein derived peptide, MF18 and its various biological role including activity against biofilm forming bacteria. Zinc finger protein are important in regulation of several cellular processes and wide range of molecular functions. The CxxC zinc finger protein identified from the cDNA library of a teleost fish; further it was characterised using various online bioinformatics programs. During the in-silico analysis, an AMP named MF18 was identified from the CxxC zinc finger protein, then it was synthesised for further biological activity studies. The antimicrobial activity of MF18 was confirmed against the biofilm clinical isolates such as Staphylococcus aureus and Escherichia coli. The MIC of the antimicrobial peptide at the concentration of 320 µM was observed against these two biofilm bacteria. The mechanism of the peptides was determined using bacteria on its membrane permeabilization ability by scanning electron microscopy. It is exhibited that the MF18 potentially influenced in damaging the morphology of the bacteria. The toxicity of MF18 against the continuous cell line (RAW 264.7) was demonstrated by MTT assay and also using peripheral red blood cells by haemolytic assay; both assays showed that the peptide have no toxicity on the cells at lower concentration. Overall, the study showed the potential therapeutic application of the peptide in pharma industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ZFP:

Zinc finger protein

PBS:

Phosphate buffered saline

CRA:

Congo red agar

TSB:

Tryptic soy agar

MTT:

3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide

DMEM:

Dulbecco’s modified eagle’s medium

RAW 264.7:

Murine macrophage cell line

OD:

Optical density

DMSO:

Dimethyl sulfoxide

MIC:

Minimum inhibitory concentration

CFU:

Colony forming unit

FACS:

Fluorescent assorted cell sorting

PI:

Propidium iodide

References

  1. Coenye T, Nelis HJ (2010) In vitro and in vivo model systems to study microbial biofilm formation. J Microbiol Methods 83:89–105

    CAS  PubMed  Google Scholar 

  2. Hall-Stoodley L, Stoodley P, Kathju S, Høiby N, Moser C, Costerton JW, Moter A, Bjarnsholt T (2012) Towards diagnostic guidelines for biofilm-associated infections. FEMS Imunol Med Microbiol 65:127–145

    CAS  Google Scholar 

  3. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    CAS  PubMed  Google Scholar 

  4. Harro JM, Peters BM, O’May GA, Archer N, Kerns P, Prabhakara R, Shirtliff ME (2010) Vaccine development in Staphylococcus aureus: taking the biofilm phenotype into consideration. FEMS Immunol Med Mic 59:306–323

    CAS  Google Scholar 

  5. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    CAS  PubMed  Google Scholar 

  6. Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the post antibiotic era. Cold Spring Harb Perspect Med 3:010306

    Google Scholar 

  7. Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, Elkins M, Thompson B, Macleod C, Aaron SD, Harbour C (2005) Antibiotic susceptibilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol 43:5085–5090

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Romling U, Balsalobre C (2012) Biofilm infections, their resilience to Therapy and innovative treatment strategies. J Intern Med 272:541–561

    CAS  PubMed  Google Scholar 

  9. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    CAS  PubMed  Google Scholar 

  10. Arasu A, Kumaresan V, Sathyamoorthi A, Arasu MV, Al-Dhabi NA, Arockiaraj J (2016) Coagulation profile, gene expression and bioinformatics characterization of coagulation factor X of striped murrel Channa striatus. Fish Shellfish Immunol 55:149–158

    CAS  PubMed  Google Scholar 

  11. Arockiaraj J, Kumaresan V, Chaurasia MK, Bhatt P, Palanisamy R, Pasupuleti M, Gnanam AJ, Kasi M (2014) Molecular characterization of a novel cathepsin B from striped murrel Channa striatus: bioinformatics analysis, gene expression, synthesis of peptide and antimicrobial property. Turk J Fish Aqua Sci 14:379–389

    Google Scholar 

  12. Arockiaraj J, Sathyamoorthi A, Kumaresan V, Palanisamy R, Chaurasia MK, Prasanth B, Gnanam AJ, Pasupuleti M, Arasu A (2014) A murrel interferon regulatory factor-1: molecular characterization, gene expression and cell protection activity. Mol Biol Rep 41:5299–5309

    CAS  PubMed  Google Scholar 

  13. Jorge P, Lourenco A, Pereira MO (2012) New trends in peptide-based anti-biofilm strategies: a review of recent achievements and bioinformatics approaches. Biofouling 28:1033–1061

    CAS  PubMed  Google Scholar 

  14. Ravichandran G, Kumaresan V, Mahesh A, Dhayalan A, Arshad A, Arasu MV, Al-Dhabi NA, Pasupuleti M, Arockiaraj J (2018) Bactericidal and fungistatic activity of peptide derived from GH18 domain of prawn chitinase 3 and its immunological functions during biological stress. Int J Biol Macro Mol 106:1014–1022

    CAS  Google Scholar 

  15. Sathyamoorthi A, Kumaresan V, Palanisamy R, Pasupuleti M, Arasu MV, Al-Dhabi NA, Marimuthu K, Amin SMN, Arshad A, Yusoff FM, Arockiaraj J (2019) Therapeutic cationic antimicrobial peptide (CAP) derived from fish aspartic proteinase Cathepsin D and its antimicrobial mechanism. Int J Pep Res Ther 25:93–105

    CAS  Google Scholar 

  16. Sathyamoorthi A, Palanisamy R, Arasu MV, Al-Dhabi NA, Pasupuleti M, Arockiaraj J (2018) Fish heat shock cognate 70 derived AMPs CsHSC70 A1 and CsHSC70 A2. Int J Pept Res Ther 24:143–155

    CAS  Google Scholar 

  17. Spızek J, Novotna J, Rezanka T, Demain A (2010) Do we need new antibiotics? The search for new targets and new compounds. J Ind Microbiol Biot 37:1241–1248

    Google Scholar 

  18. Hancock RE (2001) Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 1:156–164

    CAS  PubMed  Google Scholar 

  19. Ravichandran G, Kumaresan V, Bhatt P, Arasu MV, Al-Dhabi NA, Arockiaraj J (2017) A cumulative strategy to predict and characterize antimicrobial peptides (AMPs) from protein database. Int J Pept Res Ther 23:281–290

    CAS  Google Scholar 

  20. Sannasimuthu A, Kumaresan V, Pasupuleti M, Paray BA, Mk A-S, Arockiaraj J (2018) Radical scavenging property of a novel peptide derived from C-terminal SOD domain of superoxide dismutase enzyme in Arthrospira platensis. Algal Res 35:519–529

    Google Scholar 

  21. Li Y, Xiang Q, Zhang Q, Huang Y, Su Z (2012) Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37:207–215

    CAS  PubMed  Google Scholar 

  22. Boulanger N, Bulet P, Lowenberger C (2006) Antimicrobial peptides in the interactions between insects and flagellate parasites. Trends Parasitol 22:262–268

    CAS  PubMed  Google Scholar 

  23. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in Bacteria. Nat Rev Microbiol 3:238–250

    CAS  PubMed  Google Scholar 

  24. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557

    CAS  PubMed  Google Scholar 

  25. Sannasimuthu A, Arockiaraj J (2019) Intracellular free radical scavenging activity and protective role of mammalian cells by antioxidant peptide from thioredoxin disulfide reductase of Arthrospira platensis. J Funct Foods 61:103513

    CAS  Google Scholar 

  26. Zhu S, Gao B (2009) A fossil antibacterial peptide gives clues to structural diversity of cathelicidin-derived host defense peptides. FASEB J 23:13–20

    PubMed  Google Scholar 

  27. Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46

    CAS  PubMed  Google Scholar 

  28. Leon O, Roth M (2000) Zinc Fingers: DNA binding and protein- protein interactions. Biol Res 33:21–30

    CAS  PubMed  Google Scholar 

  29. Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231

    CAS  PubMed  Google Scholar 

  30. Arockiaraj J, Bhatt P, Harikrishnan R, Arasu MV, Al-Dhabi NA (2015) Molecular and functional roles of 6C CC chemokine 19 in defense system of striped murrel Channa striatus. Fish Shellfish Immunol 45:817–827

    CAS  PubMed  Google Scholar 

  31. Kumaresan V, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arshad A, Amin SMN, Yusoff FM, Arockiaraj J (2018) A comparative transcriptome approach for identification of molecular changes in Aphanomyces invadans infected Channa striatus. Mol Biol Rep 45:2511–2523

    CAS  PubMed  Google Scholar 

  32. Kumaresan V, Pasupuleti M, Paray BA, Al-Sadoon MK, Arockiaraj J (2019) Gene profiling of antimicrobial peptides, complement factors and MHC molecules from the skin transcriptome of Channa striatus and its expression pattern during Aeromonas hydrophila infection. Fish Shellfish Immunol 84:48–55

    CAS  PubMed  Google Scholar 

  33. Venkatesh K, Gnanam AJ, Pasupuleti M, Arasu MV, Al-Dhabi NA, Harikrishnan R, Arockiaraj J (2015) Comparative analysis of CsCu/ZnSOD defense role by molecular characterization: gene expression-enzyme activity-protein level. Gene 564:53–62

    Google Scholar 

  34. Arockiaraj J, Palanisamy R, Arasu A, Sathyamoorthi A, Kumaresan V, Bhatt P, Chaurasia MK, Pasupuleti M, Gnanam AJ (2015) An anti-apoptotic B-cell lymphoma-2 (BCL-2) from Channa striatus: sequence analysis and delayed and advanced gene expression in response to fungal, bacterial and poly I: C. Mol Immunol 63:586–594

    CAS  PubMed  Google Scholar 

  35. Arockiaraj J, Puganeshwaran V, Sarasvathi E, Arunsingh SV, Rofina YO, Bhassu S (2011) Bioinformatic characterization and gene expression pattern of apoptosis inhibitor from Macrobrachium rosenbergii challenged with infectious hypodermal and hematopoietic. Fish Shellfish Immunol 31:1259–1267

    CAS  PubMed  Google Scholar 

  36. Arockiaraj J, Palanisamy R, Kumaresan V, Bhatt P, Chaurasia MK, Kasi M, Pasupuleti M, Gnanam AJ (2015) Striped murrel S1 family serine protease: immune characterization, antibacterial property and enzyme activities. Biologia 69:1065–1078

    Google Scholar 

  37. Kumaresan V, Sannasimuthu A, Arasu MV, Al-Dhabi NA, Arockiaraj J (2018) Molecular insight into the metabolic activities of a protein-rich micro alga, Arthrospira platensis by de novo transcriptome analysis. Mol Biol Rep 45:829–838

    CAS  PubMed  Google Scholar 

  38. Palanisamy R, Bhatt P, Kumaresan V, Pasupuleti M, Arockiaraj J (2018) Innate and adaptive immune molecules of striped murrel Channa striatus. Rev Aqua 10:296–319

    CAS  Google Scholar 

  39. Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T, Rattan A (2006) Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol 24:25–29

    CAS  PubMed  Google Scholar 

  40. Wang Z, de la Fuente-Nunez C, Shen Y, Haapasalo M, Hancock REW (2015) Treatment of oral multispecies biofilms by an anti-biofilm peptide. PLoS ONE 10:e0132512

    PubMed  PubMed Central  Google Scholar 

  41. Ravichandran G, Kumaresan V, Arasu MV, Al-Dhabi NA, Ganesh NR, Mahesh A, Dhayalan A, Pasupuleti M, Arockiaraj J (2016) Pellino-1 derived cationic antimicrobial prawn peptide: bactericidal activity, toxicity and mode of action. Mol Immunol 78:171–182

    CAS  PubMed  Google Scholar 

  42. Sannasimuthu A, Kumaresan V, Anilkumar S, Pasupuleti M, Ganesh MR, Mala K, Paray BA, Al-Sadoon MK, Albeshr MF, Arockiaraj J (2019) Design and characterization of a novel Arthrospira platensis glutathione oxido-reductase-derived antioxidant peptide GM15 and its potent anti-cancer activity via caspase-9 mediated apoptosis in oral cancer cells. Free Rad Biol Med 135:198–209

    CAS  PubMed  Google Scholar 

  43. Lee H, Hwang JS, Lee J, Kim JI, Lee DG (2015) Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. Biochim Biophys Acta 1848:634–642

    CAS  PubMed  Google Scholar 

  44. Arasu A, Kumaresan V, Ganesh MR, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arockiaraj J (2017) Bactericidal activity of fish galectin 4 derived membrane-binding peptide tagged with oligotryptophan. Dev Comp Immunol 71:37–48

    CAS  PubMed  Google Scholar 

  45. Arasu A, Kumaresan V, Palanisamy R, Arasu MV, Al-Dhabi NA, Ganesh MR, Arockiaraj J (2017) Bacterial membrane binding and pore formation abilities of carbohydrate recognition domain of fish lectin. Dev Comp Immunol 67:202–212

    CAS  PubMed  Google Scholar 

  46. Kumaresan V, Bhatt P, Ganesh MR, Harikrishnan R, Arasu MV, Al-Dhabi NA, Pasupuleti M, Marimuthu K, Arockiaraj J (2015) A novel antimicrobial peptide derived from fish goose type lysozyme disrupts the membrane of Salmonella enterica. Mol Immunol 68:421–433

    CAS  PubMed  Google Scholar 

  47. Kumaresan V, Harikrishnan R, Arockiaraj J (2015) A potential Kazal-type serine protease inhibitor involves in kinetics of protease inhibition and bacteriostatic activity. Fish Shellfish Immunol 42:430–438

    CAS  PubMed  Google Scholar 

  48. Lv Y, Wang J, Gao H, Wang Z, Dong N, Ma Q, Shan A (2014) Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36. PLoS ONE 9:e86364

    PubMed  PubMed Central  Google Scholar 

  49. Wu H, Claus M, Heng-Zhuang W, Niels H, Zhi-Jun S (2014) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7:1–7

    PubMed Central  Google Scholar 

  50. Sato H, Jimmy BF (2008) Lysine-enriched cecropin-mellitin antimicrobial peptides with enhanced selectivity. Antimicrob Agents Chemother 52:4463–4465

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bhattacharjya S, Domadia PN, Bhunia A, Malladi S, David SA (2007) High-resolution solution structure of a designed peptide bound to lipopolysaccharide: transferred nuclear overhauser effects, micelle selectivity, and anti-endotoxic activity. Biochemistry 46:5864–5874

    CAS  PubMed  Google Scholar 

  52. Xiong X, Tu S, Wang J, Luo S, Yan X (2019) CXXC5: a novel regulator and coordinator of TGF-β, BMP and Wnt signaling. J Cell Mol Med 23:740–749

    CAS  PubMed  Google Scholar 

  53. Kumaresan V, Palanisamy R, Pasupuleti M, Arockiaraj J (2017) Impacts of environmental and biological stressors on immune system of Macrobrachium rosenbergii. Rev Aqua 9:283–307

    Google Scholar 

  54. Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88

    CAS  PubMed  Google Scholar 

  55. Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother 51:1398–1406

    CAS  PubMed  Google Scholar 

  56. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agent 35:322–332

    Google Scholar 

  57. Shen Y, Stojicic S, Qian W, Olsen I, Haapasalo M (2010) The synergistic antimicrobial effect by mechanical agitation and two chlorhexidine preparations on biofilm bacteria. J Endod 36:100–104

    PubMed  Google Scholar 

  58. Jiang Z, Vasil AI, Hale JD, Hancock RE, Vasil ML, Hodges RS (2008) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Pep Sci 90:369–383

    CAS  Google Scholar 

  59. Waghu FH, Gopi L, Barai RS, Ramteke P, Nizami B, Idicula-Thomas S (2014) CAMP: collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res 42:D1154–D1158

    CAS  PubMed  Google Scholar 

  60. Duwadi D, Shrestha A, Yilma B, Kozlovski I, Sa-Eed M, Dahal N, Jukosky J (2018) Identification and screening of potent antimicrobial peptides in arthropod genomes. Peptides 103:26–30

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Datta A, Ghosh A, Airoldi C, Paola S, Kamal HM, Jesus JB, Pallob K, Ayyalusamy R, Anirban B (2015) Antimicrobial peptides: insights into membrane permeabilization, lipopolysaccharide fragmentation and application in plant disease control. Sci Rep 5:11951

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesu Arockiaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights

For human blood collection, informed consent was obtained from all the participated adults in written form as per the Institute ethical approval (Ethical Clearance No. 361/IEC/2012). No animals were involved in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 344 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaram, P., Pasupuleti, M. & Arockiaraj, J. CxxC Zinc Finger Protein Derived Peptide, MF18 Functions Against Biofilm Formation. Protein J 39, 337–349 (2020). https://doi.org/10.1007/s10930-020-09904-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09904-1

Keywords

Navigation