Skip to main content

Advertisement

Log in

Disrupting Fluorescence by Mutagenesis in a Green Fluorescent Fatty Acid Binding Protein from a Marine Eel

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Biofluorescence has been found to be an increasingly widespread phenomenon in the ocean. The reclusive Caribbean chlopsid eel, Kaupichthys hyoproroides displays bright green fluorescence in its native marine environment. We have previously shown the fluorescence to be attributed to a fluorescent fatty acid-binding protein, Chlopsid FP, part of a larger family of fluorescent fatty acid-binding proteins, including the homologous UnaG. All require the addition of exogenous bilirubin for fluorescence. Here, we report the generation of a series of point mutants, and deletions that result in the quenching of fluorescence in Chlopsid FP. In addition, we report the binding constants of bilirubin to Chlopsid FP and mutants, measured by fluorescence titration. This study provides key insights into the potential mechanism of fluorescence in this class of fluorescent fatty acid-binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sparks JS, Schelly RC, Smith WL et al (2014) The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon. PLoS ONE 9:e83259. https://doi.org/10.1371/journal.pone.0083259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gruber DF, Loew ER, Deheyn DD et al (2016) Biofluorescence in catsharks (Scyliorhinidae): fundamental description and relevance for elasmobranch visual ecology. Sci Rep. https://doi.org/10.1038/srep24751

    Article  PubMed  PubMed Central  Google Scholar 

  3. Salih A, Larkum A, Cox G et al (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850. https://doi.org/10.1038/35048564

    Article  CAS  PubMed  Google Scholar 

  4. Rye C, Wise R, Jurukovski V, et al Aquatic biomes: biology 2e. OpenStax

  5. Tyler J (1968) JERLOV, N. G. 1968. Optical oceanography. American Elsevier Publ. Co., Inc, New York. 194 p. $13.50. Limnol Oceanogr 13:731–732. https://doi.org/10.4319/lo.1968.13.4.0731

    Article  Google Scholar 

  6. Gruber DF, Gaffney JP, Mehr S et al (2015) Adaptive evolution of eel fluorescent proteins from fatty acid binding proteins produces bright fluorescence in the marine environment. PLoS ONE. https://doi.org/10.1371/journal.pone.0140972

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kumagai A, Ando R, Miyatake H et al (2013) A bilirubin-inducible fluorescent protein from eel muscle. Cell 153:1602–1611. https://doi.org/10.1016/j.cell.2013.05.038

    Article  CAS  PubMed  Google Scholar 

  8. Shitashima Y, Shimozawa T, Kumagai A et al (2017) Two distinct fluorescence states of the ligand-induced green fluorescent protein UnaG. Biophys J 113:2805–2814. https://doi.org/10.1016/j.bpj.2017.10.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shitashima Y, Shimozawa T, Asahi T, Miyawaki A (2018) A dual-ligand-modulable fluorescent protein based on UnaG and calmodulin. Biochem Biophys Res Commun 496:872–879. https://doi.org/10.1016/j.bbrc.2018.01.134

    Article  CAS  PubMed  Google Scholar 

  10. Hayashi S, Toda Y (2009) A novel fluorescent protein purified from eel muscle. Fish Sci 75:1461–1469. https://doi.org/10.1007/s12562-009-0176-z

    Article  CAS  Google Scholar 

  11. Funahashi A, Itakura T, Hassanin AAI et al (2017) Ubiquitous distribution of fluorescent protein in muscles of four species and two subspecies of eel (genus Anguilla). J Genet 96:127–133. https://doi.org/10.1007/s12041-017-0751-5

    Article  CAS  PubMed  Google Scholar 

  12. Aoyama J, Nishida M, Tsukamoto K (2001) Molecular phylogeny and evolution of the freshwater eel, genus anguilla. Mol Phylogenet Evol 20:450–459. https://doi.org/10.1006/mpev.2001.0959

    Article  CAS  PubMed  Google Scholar 

  13. Broichhagen J, Trauner D (2013) Bilirubin in a new light. Angew Chem Int Ed 52:13868–13870. https://doi.org/10.1002/anie.201307345

    Article  CAS  Google Scholar 

  14. Yu C-L, Ferraro D, Ramaswamy S et al (2008) Purification and properties of Sandercyanin, a blue protein secreted in the mucus of blue forms of walleye, Sander vitreus. Environ Biol Fish 82:51–58. https://doi.org/10.1007/s10641-007-9252-3

    Article  Google Scholar 

  15. Ghosh S, Yu C-L, Ferraro DJ et al (2016) Blue protein with red fluorescence. PNAS 113:11513–11518. https://doi.org/10.1073/pnas.1525622113

    Article  CAS  PubMed  Google Scholar 

  16. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318:1–14

    Article  CAS  Google Scholar 

  17. Storch J, Thumser AEA (2000) The fatty acid transport function of fatty acid-binding proteins. Biochem Biophys Acta 1486:28–44. https://doi.org/10.1016/S1388-1981(00)00046-9

    Article  CAS  PubMed  Google Scholar 

  18. Zimmerman AW, Veerkamp JH (2002) New insights into the structure and function of fatty acid-binding proteins. Cell Mol Life Sci 59:1096–1116. https://doi.org/10.1007/s00018-002-8490-y

    Article  CAS  PubMed  Google Scholar 

  19. Schaap FG, van der Vusse GJ, Glatz JFC (2002) Evolution of the family of intracellular lipid binding proteins in vertebrates. In: Glatz JFC (ed) Cellular lipid binding proteins. Springer, Boston, pp 69–77

    Chapter  Google Scholar 

  20. Chmurzyńska A (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet 47:39–48. https://doi.org/10.1007/BF03194597

    Article  PubMed  Google Scholar 

  21. Hu H, Wang A, Huang L et al (2018) Monitoring cellular redox state under hypoxia using a fluorescent sensor based on eel fluorescent protein. Free Radical Biol Med 120:255–265. https://doi.org/10.1016/j.freeradbiomed.2018.03.041

    Article  CAS  Google Scholar 

  22. Adeosun SO, Moore KH, Lang DM, et al. (2018) A novel fluorescence-based assay for the measurement of biliverdin reductase activity. React Oxyg Species 5:35–45. https://doi.org/10.20455/ros.2018.809

    Article  Google Scholar 

  23. Inoué S, Shimomura O, Goda M et al (2002) Fluorescence polarization of green fluorescence protein. Proc Natl Acad Sci USA 99:4272–4277. https://doi.org/10.1073/pnas.062065199

    Article  CAS  PubMed  Google Scholar 

  24. Pollard TD (2010) A guide to simple and informative binding assays. Mol Biol Cell 21:4061–4067. https://doi.org/10.1091/mbc.E10-08-0683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. KaleidaGraph. Synergy Software

  26. Hulme EC, Trevethick MA (2010) Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol 161:1219–1237. https://doi.org/10.1111/j.1476-5381.2009.00604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. The PyMOL Molecular Graphics System. Version 2.0. Schrodinger, LLC

  28. Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bienert S, Waterhouse A, de Beer TAP et al (2017) The SWISS-MODEL repository-new features and functionality. Nucleic Acids Res 45:D313–D319. https://doi.org/10.1093/nar/gkw1132

    Article  CAS  PubMed  Google Scholar 

  30. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30(Suppl 1):S162–173. https://doi.org/10.1002/elps.200900140

    Article  PubMed  Google Scholar 

  31. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350. https://doi.org/10.1093/bioinformatics/btq662

    Article  CAS  PubMed  Google Scholar 

  32. Bertoni M, Kiefer F, Biasini M et al (2017) Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep. https://doi.org/10.1038/s41598-017-09654-8

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yeh JT-H, Nam K, Yeh JT-H, Perrimon N (2017) eUnaG: a new ligand-inducible fluorescent reporter to detect drug transporter activity in live cells. Sci Rep. https://doi.org/10.1038/srep41619

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Science Foundation Career Grant to J.P.G (Award Number MCB 1652731). We would like to thank Professor Pablo Peixoto for use of his fluorimeter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean P. Gaffney.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivoshik, S.R., Guarnaccia, A.M., Fried, D.B. et al. Disrupting Fluorescence by Mutagenesis in a Green Fluorescent Fatty Acid Binding Protein from a Marine Eel. Protein J 39, 145–151 (2020). https://doi.org/10.1007/s10930-020-09883-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09883-3

Keywords

Navigation