Skip to main content

Advertisement

Log in

Expression of Flp Protein in a Baculovirus/Insect Cell System for Biotechnological Applications

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The Saccharomyces cerevisiae Flp protein is a site-specific recombinase that recognizes and binds to the Flp recognition target (FRT) site, a specific sequence comprised of at least two inverted repeats separated by a spacer. Binding of four monomers of Flp is required to mediate recombination between two FRT sites. Because of its site-specific cleavage characteristics, Flp has been established as a genome engineering tool. Amongst others, Flp is used to direct insertion of genes of interest into eukaryotic cells based on single and double FRT sites. A Flp-encoding plasmid is thereby typically cotransfected with an FRT-harboring donor plasmid. Moreover, Flp can be used to excise DNA sequences that are flanked by FRT sites. Therefore, the aim of this study was to determine whether Flp protein and its step-arrest mutant, FlpH305L, recombinantly expressed in insect cells, can be used for biotechnological applications. Using a baculovirus system, the proteins were expressed as C-terminally 3 × FLAG-tagged proteins and were purified by anti-FLAG affinity selection. As demonstrated by electrophoretic mobility shift assays (EMSAs), purified Flp and FlpH305L bind to FRT-containing DNA. Furthermore, using a cell assay, purified Flp was shown to be active in recombination and to mediate efficient insertion of a donor plasmid into the genome of target cells. Thus, these proteins can be used for applications such as DNA-binding assays, in vitro recombination, or genome engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

bp:

Base pairs

C:

Carboxy

Cy5:

Cyanine 5

EDTA:

Ethylenediaminetetraacetic acid

EMSAs:

Electrophoretic mobility shift assays

FBS:

Fetal bovine serum

FRT:

Flp recognition target

kDa:

Kilo Dalton

PAGE:

Polyacrylamide gel electrophoresis

P/S:

Penicillin–streptomycin

SDS:

Sodium dodecyl sulfate

References

  1. Andrews BJ, Proteau GA, Beatty LG, Sadowski PD (1985) The FLP recombinase of the 2 micron circle DNA of yeast: interaction with its target sequences. Cell 40:795–803

    Article  CAS  Google Scholar 

  2. Gates CA, Cox MM (1988) FLP recombinase is an enzyme. Proc Natl Acad Sci USA 85:4628–4632

    Article  CAS  Google Scholar 

  3. McLeod M, Craft S, Broach JR (1986) Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Mol Cell Biol 6:3357–3367

    Article  CAS  Google Scholar 

  4. Futcher AB (1988) The 2 micron circle plasmid of Saccharomyces cerevisiae. Yeast 4:27–40

    Article  CAS  Google Scholar 

  5. Futcher AB (1986) Copy number amplification of the 2 micron circle plasmid of Saccharomyces cerevisiae. J Theor Biol 119:197–204

    Article  CAS  Google Scholar 

  6. Qian XH, Inman RB, Cox MM (1990) Protein-based asymmetry and protein-protein interactions in FLP recombinase-mediated site-specific recombination. J Biol Chem 265:21779–21788

    CAS  Google Scholar 

  7. Evans BR, Chen JW, Parsons RL, Bauer TK, Teplow DB, Jayaram M (1990) Identification of the active site tyrosine of Flp recombinase. Possible relevance of its location to the mechanism of recombination. J Biol Chem 265:18504–18510

    CAS  Google Scholar 

  8. Amin AA, Beatty LG, Sadowski PD (1990) Synaptic intermediates promoted by the FLP recombinase. J Mol Biol 214:55–72

    Article  CAS  Google Scholar 

  9. Gronostajski RM, Sadowski PD (1985) The FLP recombinase of the Saccharomyces cerevisiae 2 microns plasmid attaches covalently to DNA via a phosphotyrosyl linkage. Mol Cell Biol 5:3274–3279

    Article  CAS  Google Scholar 

  10. Whiteson KL, Chen Y, Chopra N, Raymond AC, Rice PA (2007) Identification of a potential general acid/base in the reversible phosphoryl transfer reactions catalyzed by tyrosine recombinases: Flp H305. Chem Biol 14:121–129

    Article  CAS  Google Scholar 

  11. Parsons RL, Prasad PV, Harshey RM, Jayaram M (1988) Step-arrest mutants of FLP recombinase: implications for the catalytic mechanism of DNA recombination. Mol Cell Biol 8:3303–3310

    Article  CAS  Google Scholar 

  12. Zhu XD, Sadowski PD (1995) Cleavage-dependent ligation by the FLP recombinase. Characterization of a mutant FLP protein with an alteration in a catalytic amino acid. J Biol Chem 270:23044–23054

    Article  CAS  Google Scholar 

  13. O’Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251:1351–1355

    Article  Google Scholar 

  14. Schlake T, Bode J (1994) Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. BioChemistry 33:12746–12751

    Article  CAS  Google Scholar 

  15. Seibler J, Bode J (1997) Double-reciprocal crossover mediated by FLP-recombinase: a concept and an assay. Biochemistry 36:1740–1747

    Article  CAS  Google Scholar 

  16. Turan S, Kuehle J, Schambach A, Baum C, Bode J (2010) Multiplexing RMCE: versatile extensions of the Flp-recombinase-mediated cassette-exchange technology. J Mol Biol 402:52–69

    Article  CAS  Google Scholar 

  17. Patsch C, Peitz M, Otte DM, Kesseler D, Jungverdorben J, Wunderlich FT, Brustle O, Zimmer A, Edenhofer F (2010) Engineering cell-permeant FLP recombinase for tightly controlled inducible and reversible overexpression in embryonic stem cells. Stem Cells 28:894–902

    CAS  Google Scholar 

  18. Patsch C, Kesseler D, Edenhofer F (2011) Genetic engineering of mammalian cells by direct delivery of FLP recombinase protein. Methods 53:386–393

    Article  CAS  Google Scholar 

  19. Wang M, Zuris JA, Meng F, Rees H, Sun S, Deng P, Han Y, Gao X, Pouli D, Wu Q, Georgakoudi I, Liu DR, Xu Q (2016) Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci USA 113:2868–2873

    Article  CAS  Google Scholar 

  20. Yu X, Liang X, Xie H, Kumar S, Ravinder N, Potter J, de Mollerat du Jeu X, Chesnut JD (2016) Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. Biotechnol Lett 38:919–929

    Article  CAS  Google Scholar 

  21. Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, Maeder ML, Joung JK, Chen ZY, Liu DR (2015) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol 33:73–80

    Article  CAS  Google Scholar 

  22. Hopp TP, Prickett KS, Price VL, Libby RT, March CJ, Cerretti DP, Urdal DL, Conlon PJ (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. Nat Biotechnol 6:1204–1210

    Article  CAS  Google Scholar 

  23. Einhauer A, Jungbauer A (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49:455–465

    Article  CAS  Google Scholar 

  24. Inui K, Zhao Z, Yuan J, Jayaprakash S, Le LT, Drakulic S, Sander B, Golas MM (2017) Stepwise assembly of functional C-terminal REST/NRSF transcriptional repressor complexes as a drug target. Protein Sci 26:997–1011

    Article  CAS  Google Scholar 

  25. Lin TY, Voronovsky A, Raabe M, Urlaub H, Sander B, Golas MM (2015) Dual tagging as an approach to isolate endogenous chromatin remodeling complexes from Saccharomyces cerevisiae. Biochim Biophys Acta 1854:198–208

    Article  CAS  Google Scholar 

  26. Thomas H, Senkel S, Erdmann S, Arndt T, Turan G, Klein-Hitpass L, Ryffel GU (2004) Pattern of genes influenced by conditional expression of the transcription factors HNF6, HNF4alpha and HNF1beta in a pancreatic beta-cell line. Nucleic Acids Res 32:e150

    Article  Google Scholar 

  27. Dozmorov I, Eisenbraun MD, Lefkovits I (2000) Limiting dilution analysis: from frequencies to cellular interactions. Immunol Today 21:15–18

    Article  CAS  Google Scholar 

  28. Hu Y, Smyth GK (2009) ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 347:70–78

    Article  CAS  Google Scholar 

  29. R Development Core Team (2013) R: a language and environment for statistical computing. In: R foundation for statistical computing. Vienna, Austria

  30. Berger I, Fitzgerald DJ, Richmond TJ (2004) Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22:1583–1587

    Article  CAS  Google Scholar 

  31. Andrews BJ, Beatty LG, Sadowski PD (1987) Isolation of intermediates in the binding of the FLP recombinase of the yeast plasmid 2-micron circle to its target sequence. J Mol Biol 193:345–358

    Article  CAS  Google Scholar 

  32. Buchholz F, Ringrose L, Angrand PO, Rossi F, Stewart AF (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24:4256–4262

    Article  CAS  Google Scholar 

  33. Conway AB, Chen Y, Rice PA (2003) Structural plasticity of the Flp-Holliday junction complex. J Mol Biol 326:425–434

    Article  CAS  Google Scholar 

  34. Chen Y, Rice PA (2003) The role of the conserved Trp330 in Flp-mediated recombination. Functional and structural analysis. J Biol Chem 278:24800–24807

    Article  CAS  Google Scholar 

  35. Babineau D, Vetter D, Andrews BJ, Gronostajski RM, Proteau GA, Beatty LG, Sadowski PD (1985) The FLP protein of the 2-micron plasmid of yeast. Purification of the protein from Escherichia coli cells expressing the cloned FLP gene. J Biol Chem 260:12313–12319

    CAS  Google Scholar 

  36. Meyer-Leon L, Gates CA, Attwood JM, Wood EA, Cox MM (1987) Purification of the FLP site-specific recombinase by affinity chromatography and re-examination of basic properties of the system. Nucleic Acids Res 15:6469–6488

    Article  CAS  Google Scholar 

  37. Pan H, Clary D, Sadowski PD (1991) Identification of the DNA-binding domain of the FLP recombinase. J Biol Chem 266:11347–11354

    CAS  Google Scholar 

  38. Chen XL, Reindle A, Johnson ES (2005) Misregulation of 2 microm circle copy number in a SUMO pathway mutant. Mol Cell Biol 25:4311–4320

    Article  CAS  Google Scholar 

  39. Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 16:5509–5519

    Article  CAS  Google Scholar 

  40. Xiong L, Chen XL, Silver HR, Ahmed NT, Johnson ES (2009) Deficient SUMO attachment to Flp recombinase leads to homologous recombination-dependent hyperamplification of the yeast 2 microm circle plasmid. Mol Biol Cell 20:1241–1251

    Article  CAS  Google Scholar 

  41. Lee J, Jayaram M, Grainge I (1999) Wild-type Flp recombinase cleaves DNA in trans. EMBO J 18:784–791

    Article  CAS  Google Scholar 

  42. Chung NP, Matthews K, Kim HJ, Ketas TJ, Golabek M, de Los Reyes K, Korzun J, Yasmeen A, Sanders RW, Klasse PJ, Wilson IA, Ward AB, Marozsan AJ, Moore JP, Cupo A (2014) Stable 293 T and CHO cell lines expressing cleaved, stable HIV-1 envelope glycoprotein trimers for structural and vaccine studies. Retrovirology 11:33

    Article  Google Scholar 

  43. Ward RJ, Alvarez-Curto E, Milligan G (2011) Using the Flp-In T-Rex system to regulate GPCR expression. Methods Mol Biol 746:21–37

    Article  CAS  Google Scholar 

  44. Zhou H, Liu ZG, Sun ZW, Huang Y, Yu WY (2010) Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system. J Biotechnol 147:122–129

    Article  CAS  Google Scholar 

  45. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509

    Article  CAS  Google Scholar 

  46. Lyznik LA, Mitchell JC, Hirayama L, Hodges TK (1993) Activity of yeast FLP recombinase in maize and rice protoplasts. Nucleic Acids Res 21:969–975

    Article  CAS  Google Scholar 

  47. Li B, Li N, Duan X, Wei A, Yang A, Zhang J (2010) Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. J Biotechnol 145:206–213

    Article  CAS  Google Scholar 

  48. Sanchez-Martinez C, Perez-Martin J (2002) Site-specific targeting of exogenous DNA into the genome of Candida albicans using the FLP recombinase. Mol Genet Genomics 268:418–424

    Article  CAS  Google Scholar 

  49. Ringrose L, Lounnas V, Ehrlich L, Buchholz F, Wade R, Stewart AF (1998) Comparative kinetic analysis of FLP and cre recombinases: mathematical models for DNA binding and recombination. J Mol Biol 284:363–384

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Juan Yuan for help with spectrometry, and Susanne Stubbe and Golshah Ayoubi for excellent technical assistance. We wish to thank the Danish Neuroscience Centre, Aarhus, Denmark for use of cell culturing facilities. This study was supported by a Lundbeck Foundation Fellowship and the Sapere Aude Program of the Danish Council for Independent Research to MMG. ISJ was supported by the Graduate School of Health, Aarhus University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika M. Golas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1008 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, I.S., Inui, K., Drakulic, S. et al. Expression of Flp Protein in a Baculovirus/Insect Cell System for Biotechnological Applications. Protein J 36, 332–342 (2017). https://doi.org/10.1007/s10930-017-9724-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-017-9724-z

Keywords

Navigation