Skip to main content
Log in

Construction, Expression, and Characterization of Recombinant Pfu DNA Polymerase in Escherichia coli

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Pfu DNA polymerase (Pfu) is a DNA polymerase isolated from the hyperthermophilic archaeon Pyrococcus furiosus. With its excellent thermostability and high fidelity, Pfu is well known as one of the enzymes widely used in the polymerase chain reaction. In this study, the recombinant plasmid pLysS His6-tagged Pfu-pET28a was constructed. His-tagged Pfu was expressed in Escherichia coli BL21 (DE3) competent cells and then successfully purified with the ÄKTAprime plus compact one-step purification system by Ni2+ chelating affinity chromatography after optimization of the purification conditions. The authenticity of the purified Pfu was further confirmed by peptide mass fingerprinting. A bio-assay indicated that its activity in the polymerase chain reaction was equivalent to that of commercial Pfu and its isoelectric point was found to be between 6.85 and 7.35. These results will be useful for further studies on Pfu and its wide application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AP:

Ammonium persulfate

bp:

Base pair

E. coli :

Escherichia coli

EDTA:

Ethylene diamine tetraacetic acid

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

PAGE:

Polyacrylamide gel electrophoresis

pEGFP:

Plasmid enhanced green fluorescent protein

pI:

Isoelectric point

PMSF:

Phenylmethylsulfonyl fluoride

SDS:

Sodium dodecyl sulfate

TEMED:

N,N,N′,N′-Tetramethylethylenediamine

U:

Unit

References

  1. Lundberg KS, Shoemaker DD, Adams MWW, Short JM, Sorge JA, Mathur EJ (1991) High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108:1–6

    Article  CAS  Google Scholar 

  2. Ppyun H, Kim I, Cho SS, Seo KJ, Yoon K, Kwon S (2012) Improved PCR performance using mutant Tpa-S DNA polymerases from the hyperthermophilic archaeon Thermococcus pacificus. J Biotechnol 164:363–370

    Article  CAS  Google Scholar 

  3. Cline J, Braman JC, Hogrefe HH (1996) PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res 24:3546–3551

    Article  CAS  Google Scholar 

  4. Pavlov AR, Pavlova NV, Kozyavkin SA, Slesarev AI (2004) Recent developments in the optimization of thermostable DNA polymerases for efficient applications. Trends in Biotechnol 22:253–260

    Article  CAS  Google Scholar 

  5. Kim YJ, Cha S, Lee HS, Ryu YG, Bae SS, Cho Y, Cho H, Kim S, Kwon S, Lee J, Kang SG (2008) Sensing domain and extension rate of a family B-Type DNA Polymerase determine the stalling at a deaminated base. J Microbiol Biotechnol 18:1377–1385

    CAS  Google Scholar 

  6. Norholm MHH (2010) A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol 10:21–27

    Article  Google Scholar 

  7. Jozwiakowski SK, Connolly BA (2009) Plasmid-based lacZa assay for DNA polymerase fidelity: application to archaeal family-B DNA polymerase. Nucleic Acids Res 37:102–108

    Article  Google Scholar 

  8. Melissis S, Labrou NE, Clonis YD (2007) One-step purification of Taq DNA polymerase using nucleotide-mimetic affinity chromatography. J Biotechnol 2:121–132

    Article  CAS  Google Scholar 

  9. Lu C, Erickson HP (1997) Expression in Escherichia coli of the thermostable DNA polymerase from Pyrococcus furiosus. Protein Expr Purif 11:179–184

    Article  CAS  Google Scholar 

  10. Hu J, Wang F, Liu C (2015) Development of an efficient process intensification strategy for enhancing Pfu DNA polymerase production in recombinant Escherichia coli. Bioprocess Biosyst Eng 38:651–659

    Article  CAS  Google Scholar 

  11. Ferralli P, Egan J (2007) Making Taq DNA polymerase in the undergraduate biology laboratory. Bios 78:69–74

    Article  CAS  Google Scholar 

  12. Sun ZH, Cai J (2006) Purification of recombinant Pfu DNA polymerase using a new JK110 resin. Korean J Chem Eng 23:607–609

    Article  Google Scholar 

  13. Nika H, Angeletti RH, Hawke DH (2014) N-terminal protein characterization by mass spectrometry using combined microscale liquid and solid-phase derivatization. J Biomol Tech 25:77–86

    Article  Google Scholar 

  14. Uemori T, Ishino Y, Toh H, Asada K, Kato I (1993) Organization and nucleotide sequence of the DNA polymerase gene from the archaeon Pyrococcus furiosus. Nucl Acids Res 21(2):259–265

    Article  CAS  Google Scholar 

  15. Ignatov KB, Barsova EV, Fradkov AF, Blagodatskikh KA, Kramarova TV, Kramarov VM (2014) A strong strand displacement activity of thermostable DNA polymerase markedly improves the results of DNA amplification. Biotechniques 57:81–87

    CAS  Google Scholar 

  16. Braithwaite DK, Ito J (1993) Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res 21(4):787–802

    Article  CAS  Google Scholar 

  17. Kim SW, Kim DU, Kim JK, Kang LW, Cho HS (2008) Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus. Int J Biol Macromol 42:356–361

    Article  Google Scholar 

  18. Drum M, Kranaster R, Ewald C, Blasczyk R, Marx A (2014) Variants of a Thermus aquaticus DNA polymerase with increased selectivity for applications in allele- and methylation-specific amplification. PLoS ONE 9(5):e96640–e96650

    Article  Google Scholar 

  19. Biles BD, Connolly BA (2004) Low-fidelity Pyrococcus furiosus DNA polymerase mutants useful in error-prone PCR. Nucleic Acids Res 32(22):176–182

    Article  Google Scholar 

  20. Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawakami B, Oka M, Imanaka T (1997) Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl Environ Microbiol 63(11):4504–4510

    CAS  Google Scholar 

  21. Kim YJ, Lee HS, Bae SS, Jeon JH, Lim JK, Cho Y, Nam KH, Kang SG, Kim SJ, Kwon ST, Lee JH (2007) Cloning, purification, and characterization of a new DNA polymerase from a hyperthermophilic archaeon, Thermococcus sp. NA1. J Microbiol Biotechnol 17(7):1090–1097

    CAS  Google Scholar 

  22. Mroczkowski BS, Huvar A, Lernhardt W, Misono K, Nielson K, Scott B (1994) Secretion of thermostable DNA polymerase using a novel baculovirus vector. J Biol Chem 269(18):13522–13528

    CAS  Google Scholar 

  23. Miura M, Tanigawa C, Fujii Y, Kaneko S (2013) Comparison of six commercially-available DNA polymerase for direct PCR. Rev Inst Med Trop Sao Paulo 55(6):401–406

    Article  CAS  Google Scholar 

  24. Viennois E, Chen F, Laroui H, Baker MT, Merlin D (2013) Dextran sodium sulfate inhibits the activities of both polymerase and reverse transcriptase: lithium chloride purification, a rapid and efficient technique to purify RNA. BMC Res Notes 6:360–367

    Article  Google Scholar 

  25. Chong SS, Eichler EE, Nelson DL, Hughes MR (1994) Robust amplification and ethidium-visible detection of the fragile X syndrome CGG repeat using Pfu polymerase. Am J Med Genet 51(4):522–526

    Article  CAS  Google Scholar 

  26. Eckert KA, Kunkel TA (1991) DNA polymerase fidelity and the polymerase chain reaction. Genome Res 1:17–24

    Article  CAS  Google Scholar 

  27. Moser IJ, DiFrancesco RA, Gowda K, Klingele AJ, Sugar DR, Stocki S, Mead DA, Schoenfeld TW (2012) Thermostable DNA polymerase from a viral metagenome is a potent RT-PCR enzyme. PLoS ONE 7(6):e38371–e38383

    Article  CAS  Google Scholar 

  28. Barnes DE, Lindahl T (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 38:445–476

    Article  CAS  Google Scholar 

  29. Krokan HE, Drablos F, Slupphaug G (2002) Uracil in DNA—occurrence, consequences and repair. Oncogene 21(58):8935–8948

    Article  CAS  Google Scholar 

  30. Melissis S, Labrou NE, Clonis YD (2006) Nucleotide-mimetic synthetic ligands for DNA-recognizing enzymes one-step purification of Pfu DNA polymerase. J Chromatogr A 1122(1–2):63–75

    Article  CAS  Google Scholar 

  31. Pearl LH (2000) Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res/DNA Repair 460(3–4):165–181

    Article  CAS  Google Scholar 

  32. Wardle J, Burgers PMJ, Cann IKO, Darley K, Heslop P, Johansson E, Lin LJ, McGlynn P, Sanvoisin J, Stith CM, Connolly BA (2008) Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya. Nucleic Acids Res 36(3):705–711

    Article  CAS  Google Scholar 

  33. Dabrowski S, Ahring BK (2000) Cloning, expression, and purification of the His6-tagged hyper-thermostable dUTPase from Pyrococcus woesei in Escherichia coli: application in PCR. Protein Expr Purif 19(1):107–112

    Article  CAS  Google Scholar 

  34. Niimi H, Mori M, Tabata H, Minami H, Ueno T, Hayashi S, Kitajima I (2011) A novel eukaryote-made thermostable DNA polymerase which is free from bacterial DNA contamination. J Clin Microbiol 49(9):3316–3320

    Article  CAS  Google Scholar 

  35. Kuroita T, Matsumura H, Yokota N, Kitabayashi M, Hashimoto H, Inoue T, Imanaka T, Kai Y (2005) Structural mechanism for coordination of proofreading and polymerase activities in archaeal DNA polymerases. J Mol Biol 351(2):291–298

    Article  CAS  Google Scholar 

  36. Spangler R, Goddard NL, Thaler DS (2009) Optimizing Taq polymerase concentration for improved signal-to-noise in the broad range detection of low abundance bacteria. PLoS ONE 4(9):e7010–e7017

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Natural Basic Sciences Personnel Training Foundation of China (No. J1310033) for funding support. We acknowledged Professor Jijie Chai (National Institute of Biological Sciences of Beijing) for the provision of Pfu gene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Bi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, W., Wang, Q. & Bi, Q. Construction, Expression, and Characterization of Recombinant Pfu DNA Polymerase in Escherichia coli . Protein J 35, 145–153 (2016). https://doi.org/10.1007/s10930-016-9651-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-016-9651-4

Keywords

Navigation