Skip to main content

Advertisement

Log in

Biochemical Characterization and Computational Identification of Mycobacterium tuberculosis Pyrazinamidase in Some Pyrazinamide-Resistant Isolates of Iran

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Pyrazinamide (PZA) is one the first line anti-tuberculosis drugs that require activation by the pyrazinamidase (PZase). Most PZA-resistant Mycobacterium tuberculosis strains have mutations in the pncA gene which encoding PZase that result in the reduction or loss of the enzyme activity. Herein, we have examined how various mutations, which have been found from the PZA-resistant M. t uberculosis strains in Iran, modify the PZase activity. To elucidate the possible role of these mutations, namely A143T (MUT1), L151S (MUT2), A143T/T168A/E173K (MUT3), in the bioactivity of the enzyme, the PZase and mutant genes were cloned, functionally expressed and biochemically and computationally characterized. In comparison to the PZase enzyme, the enzymatic efficiency of mutant enzymes was decreased, with MUT2 indicating the largest enzymatic efficiency reduction. Homology models of mutants were constructed based on the PZase X-ray crystal structure. Molecular modeling and substrate docking revealed that the wild-type has much stronger binding affinity to PZA than the mutants whereas MUT2 has the weakest binding affinity. In addition, the molecular dynamics simulations and the essential dynamics results illustrated that the positions of the 51st to 71st residues were more dynamics in MUT2 as compared to the other atoms in PZase, MUT1 and MUT3 which could decrease the K m and k cat values of the enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PZA:

Pyrazinamide

PZase:

Pyrazinamidase

MUT1:

Mutation A143T

MUT2:

Mutation L151S

MUT3:

Mutation A143T/T168A/E173K

TB:

Tuberculosis

MDR-TB:

Multidrug-resistant tuberculosis

XDR-TB:

Extensively drug-resistant tuberculosis

POA:

Pyrazinoic acid

pncA :

Pyrazinamidase coding gene

RMSD:

Root mean square deviation

MD:

Molecular dynamics

SPC:

Simple point charge

PME:

Particle Mesh Ewald

RMSF:

Root-mean-square fluctuation

ED:

Essential dynamics

MSD:

Mean square displacements

OD:

Optical density

PDB:

Protein Data Bank

References

  1. World Health Organization (2014) Improved data reveals higher global burden of tuberculosis. Cent Eur J Public Health 22:228

  2. Migliori GB, Loddenkemper R, Blasi F, Raviglione MC (2007) 125 years after Robert Koch’s discovery of the tubercle bacillus: the new XDR-TB threat. Is “science” enough to tackle the epidemic? Eur Respir J 29:423–427

    Article  CAS  Google Scholar 

  3. Yuksel P, Tansel O (2009) Characterization of pncA mutations of pyrazinamide-resistant Mycobacterium tuberculosis in Turkey. New Microbiol 32:153–158

    CAS  Google Scholar 

  4. Dye C, Williams BG, Espinal MA, Raviglione MC (2002) Erasing the world’s slow stain: strategies to beat multidrug-resistant tuberculosis. Science 295:2042–2046

    Article  CAS  Google Scholar 

  5. Ocampo M, Aristizabal-Ramirez D, Rodriguez DM, Munoz M, Curtidor H, Vanegas M, Patarroyo MA, Patarroyo ME (2012) The role of Mycobacterium tuberculosis Rv3166c protein-derived high-activity binding peptides in inhibiting invasion of human cell lines. Protein Eng Des Sel 25:235–242

    Article  CAS  Google Scholar 

  6. Heifets L, Lindholm-Levy P (1992) Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis bacterial populations. Am Rev Respir Dis 145:1223–1225

    Article  CAS  Google Scholar 

  7. Hoffner S, Angeby K, Sturegard E, Jonsson B, Johansson A, Sellin M, Werngren J (2013) Proficiency of drug susceptibility testing of Mycobacterium tuberculosis against pyrazinamide: the Swedish experience. Int J Tuberc Lung Dis 17:1486–1490

    Article  CAS  Google Scholar 

  8. Piersimoni C, Mustazzolu A, Giannoni F, Bornigia S, Gherardi G, Fattorini L (2013) Prevention of false resistance results obtained in testing the susceptibility of Mycobacterium tuberculosis to pyrazinamide with the Bactec MGIT 960 system using a reduced inoculum. J Clin Microbiol 51:291–294

    Article  CAS  Google Scholar 

  9. Stoffels K, Mathys V, Fauville-Dufaux M, Wintjens R, Bifani P (2012) Systematic analysis of pyrazinamide-resistant spontaneous mutants and clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 56:5186–5193

    Article  CAS  Google Scholar 

  10. Scorpio A, Zhang Y (1996) Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2:662–667

    Article  CAS  Google Scholar 

  11. Scorpio A, Collins D, Whipple D, Cave D, Bates J, Zhang Y (1997) Rapid differentiation of bovine and human tubercle bacilli based on a characteristic mutation in the bovine pyrazinamidase gene. J Clin Microbiol 35:106–110

    CAS  Google Scholar 

  12. Pandey S, Newton S, Upton A, Roberts S, Drinkovic D (2009) Characterisation of pncA mutations in clinical Mycobacterium tuberculosis isolates in New Zealand. Pathology 41:582–584

    Article  CAS  Google Scholar 

  13. Bishop KS, Blumberg L, Trollip AP, Smith AN, Roux L, York DF, Kiepiela P (2001) Characterisation of the pncA gene in Mycobacterium tuberculosis isolates from Gauteng, South Africa. Int J Tuberc Lung Dis 5:952–957

    CAS  Google Scholar 

  14. Singh P, Mishra AK, Malonia SK, Chauhan DS, Sharma VD, Venkatesan K, Katoch VM (2006) The paradox of pyrazinamide: an update on the molecular mechanisms of pyrazinamide resistance in Mycobacteria. J Commun Dis 38:288–298

    Google Scholar 

  15. Petrella S, Gelus-Ziental N, Maudry A, Laurans C, Boudjelloul R, Sougakoff W (2011) Crystal structure of the pyrazinamidase of Mycobacterium tuberculosis: insights into natural and acquired resistance to pyrazinamide. PLoS One 6:e15785

    Article  CAS  Google Scholar 

  16. Rajendran V, Sethumadhavan R (2014) Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J Biomol Struct Dyn 32:209–221

    Article  CAS  Google Scholar 

  17. Yoon JH, Nam JS, Kim KJ, Ro YT (2014) Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis isolates from Korea and analysis of the correlation between the mutations and pyrazinamidase activity. World J Microbiol Biotechnol 30:2821–2828

    Article  CAS  Google Scholar 

  18. Mirsaeidi SM, Tabarsi P, Khoshnood K, Pooramiri MV, Rowhani-Rahbar A, Mansoori SD, Masjedi H, Zahirifard S, Mohammadi F, Farnia P, Masjedi MR, Velayati AA (2005) Treatment of multiple drug-resistant tuberculosis (MDR-TB) in Iran. Int J Infect Dis 9:317–322

    Article  Google Scholar 

  19. Doustdar F, Khosravi AD, Farnia P (2009) Mycobacterium tuberculosis genotypic diversity in pyrazinamide-resistant isolates of Iran. Microb Drug Resist 15:251–256

    Article  CAS  Google Scholar 

  20. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  21. Scorpio A, Lindholm-Levy P, Heifets L, Gilman R, Siddiqi S, Cynamon M, Zhang Y (1997) Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 41:540–543

    CAS  Google Scholar 

  22. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C, Connell CR, Heiner C, Kent SB, Hood LE (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321:674–679

    Article  CAS  Google Scholar 

  23. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  24. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2004) GenBank: update. Nucleic Acids Res 32:D23–26

    Article  CAS  Google Scholar 

  25. Bairoch A, Apweiler R (1999) The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res 27:49–54

    Article  CAS  Google Scholar 

  26. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  27. Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  CAS  Google Scholar 

  28. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  30. Wayne LG (1974) Simple pyrazinamidase and urease tests for routine identification of mycobacteria. Am Rev Respir Dis 109:147–151

    CAS  Google Scholar 

  31. Webster DM (2000) Protein structure prediction: methods and protocols. Humana, Totowa

    Book  Google Scholar 

  32. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–367

    Article  CAS  Google Scholar 

  33. Schneidman-Duhovny D, Inbar Y, Polak V, Shatsky M, Halperin I, Benyamini H, Barzilai A, Dror O, Haspel N, Nussinov R, Wolfson HJ (2003) Taking geometry to its edge: fast unbound rigid (and hinge-bent) docking. Proteins 52:107–112

    Article  CAS  Google Scholar 

  34. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  35. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  36. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem B 91:6269–6271

    Article  CAS  Google Scholar 

  37. Berendsen HJC, van der Spoel DJ, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  38. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  39. Darden T, York D, Pedersen L (1993) Particle Mesh Ewald-an N.Log(N) method for Ewald sums in large systems. Chem Phys J 98:10089–10092

    Article  CAS  Google Scholar 

  40. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  41. Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins 17:13

    Article  Google Scholar 

  42. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  43. Mehrnejad F, Naderi-Manesh H, Ranjbar B (2007) The structural properties of magainin in water, TFE/water, and aqueous urea solutions: molecular dynamics simulations. Proteins 67:931–940

    Article  CAS  Google Scholar 

  44. Grimanelli D, Leblanc O, Espinosa E, Perotti E, Gonzalez de Leon D, Savidan Y (1998) Non-Mendelian transmission of apomixis in maize–Tripsacum hybrids caused by a transmission ratio distortion. Heredity 80(Pt 1):40–47

    Article  Google Scholar 

  45. Grimanelli D, Leblanc O, Espinosa E, Perotti E, Gonzalez de Leon D, Savidan Y (1998) Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or several genes? Heredity 80(Pt 1):33–39

    Article  Google Scholar 

  46. Zhang JL, Zheng QC, Li ZQ, Zhang HX (2012) Molecular dynamics simulations suggest ligand’s binding to nicotinamidase/pyrazinamidase. PLoS One 7:e39546

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank all of our colleagues for help and advice. The authors express their gratitude to Biotechnology lab of Agriculture Faculty, Azarbayjan Shahid Madani University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faramarz Mehrnejad.

Appendix

Appendix

See Fig. 11.

Fig. 11
figure 11

The kinetic date (Lineweaver–Burk curves) of wild type pyrazinamidase and mutants

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doustdar, F., Pazhang, M., Mehrnejad, F. et al. Biochemical Characterization and Computational Identification of Mycobacterium tuberculosis Pyrazinamidase in Some Pyrazinamide-Resistant Isolates of Iran. Protein J 34, 181–192 (2015). https://doi.org/10.1007/s10930-015-9610-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-015-9610-5

Keywords

Navigation