Skip to main content
Log in

Effect of Temperature on the Conformation of Natively Unfolded Protein 4E-BP1 in Aqueous and Mixed Solutions Containing Trifluoroethanol and Hexafluoroisopropanol

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Natively unfolded (intrinsically disordered) proteins have attracted growing attention due to their high abundance in nature, involvement in various signalling and regulatory pathways and direct association with many diseases. In the present work the combined effect of temperature and alcohols, trifluoroethanol (TFE) and hexafluoroisopropanol (HFIP), on the natively unfolded 4E-BP1 protein was studied to elucidate the balance between temperature-induced folding and unfolding in intrinsically disordered proteins. It was shown that elevated temperatures induce reversible partial folding of 4E-BP1 both in buffer and in the mixed solutions containing denaturants. In the mixed solutions containing TFE (HFIP) 4E-BP1 adopts a partially folded helical conformation. As the temperature increases, the initial temperature-induced protein folding is replaced by irreversible unfolding/melting only after a certain level of the protein helicity has been reached. Onset unfolding temperature decreases with TFE (HFIP) concentration in solution. It was shown that an increase in the temperature induces two divergent processes in a natively unfolded protein—hydrophobicity-driven folding and unfolding. Balance between these two processes determines thermal behaviour of a protein. The correlation between heat-induced protein unfolding and the amount of helical content in a protein is revealed. Heat-induced secondary structure formation can be a valuable test to characterise minor changes in the conformations of natively unfolded proteins as a result of site-directed mutagenesis. Mutants with an increased propensity to fold into a structured form reveal different temperature behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

IDP:

Intrinsically disordered protein

TFE:

2,2,2-Trifluoroethanol

HFIP:

1,1,1,3,3,3-Hexafluoro-2-propanol

GuHCl:

Guanidine hydrochloride

CD:

Circular dichroism

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  1. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269:2–12

    Article  CAS  Google Scholar 

  2. Uversky VN (2013) A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 22:693–724

    Article  CAS  Google Scholar 

  3. Uversky VN (2013) Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta 1834:932–951

    Article  CAS  Google Scholar 

  4. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264

    Article  CAS  Google Scholar 

  5. Uversky VN (2011) Intrinsically disordered proteins from A to Z. Int J Biochem Cell Biol 43:1090–1103

    Article  CAS  Google Scholar 

  6. Liu Z, Huang Y (2014) Advantages of proteins being disordered. Protein Sci 23:539–550

    Article  CAS  Google Scholar 

  7. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764

    Article  CAS  Google Scholar 

  8. Theillet F-X, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ et al (2014) Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 114(13):6661–6714

    Article  CAS  Google Scholar 

  9. Obradovic Z, Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK (2003) Predicting intrinsic disorder from amino acid sequence. Proteins 53:566–572

    Article  CAS  Google Scholar 

  10. Peng Z, Xue B, Kurgan L, Uversky VN (2013) Resilience of death: intrinsic disorder in proteins involved in the programmed cell death. Cell Death Differ 20:1257–1267

    Article  CAS  Google Scholar 

  11. Uversky VN (2008) Amyloidogenesis of natively unfolded proteins. Curr Alzheimer Res 5:260–287

    Article  CAS  Google Scholar 

  12. Babu MM, van der Lee R, de Groot NS, Gsponer J (2011) Intrinsically disordered proteins: regulation and disease. Curr Opin Struct Biol 21:432–440

    Article  CAS  Google Scholar 

  13. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    Article  CAS  Google Scholar 

  14. Steven J (2010) Metallo intrinsically disordered proteins are potential drug targets. Curr Opin Chem Biol 14:481–488

    Article  Google Scholar 

  15. Cozzetto D, Jones DT (2013) The contribution of intrinsic disorder prediction to the elucidation of protein function. Curr Opin Struct Biol 23:467–472

    Article  CAS  Google Scholar 

  16. Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19:31–38

    Article  CAS  Google Scholar 

  17. Shirai NC, Kikuchi M (2013) Structural flexibility of intrinsically disordered proteins induces stepwise target recognition. J Chem Phys 139:225103

    Article  Google Scholar 

  18. Kovacs D, Szabo B, Pancsa R, Tompa P (2013) Intrinsically disordered proteins undergo and assist folding transitions in the proteome. Arch Biochem Biophys 531:80–89

    Article  CAS  Google Scholar 

  19. Sigalov AB (2011) Uncoupled binding and folding of immune signaling-related intrinsically disordered proteins. Prog Biophys Mol Biol 106:525–536

    Article  CAS  Google Scholar 

  20. Perticaroli S, Nickels JD, Ehlers G, Mamontov E, Sokolov AP (2014) Dynamics and rigidity in an intrinsically disordered protein, β-casein. J Phys Chem B 118:7317–7326

    Article  CAS  Google Scholar 

  21. Uversky VN (2009) Intrinsically disordered proteins and their environment: effects of strong denaturants, temperature, pH, counter ions, membranes, binding partners, osmolytes, and macromolecular crowding. Protein J 28:305–325

    Article  CAS  Google Scholar 

  22. Neyroz P, Ciurli S, Uversky VN (2012) Denaturant-induced conformational transitions in intrinsically disordered proteins. Methods Mol Biol 896:197–213

    CAS  Google Scholar 

  23. Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477–480

    Article  CAS  Google Scholar 

  24. Sonenberg N (2008) eIF4E, the mRNA cap-binding protein: from basic discovery to translational research. Biochem Cell Biol 86:178–183

    Article  CAS  Google Scholar 

  25. Tait S, Dutta K, Cowburn D, Warwicker J, Doig AJ, McCarthy JE (2010) Local control of a disorder-order transition in 4E-BP1 underpins regulation of translation via eIF4E. Proc Natl Acad Sci U S A 107:17627–17632

    Article  CAS  Google Scholar 

  26. Martineau Y, Azar R, Bousquet C, Pyronnet S (2013) Anti-oncogenic potential of the eIF4E-binding proteins. Oncogene 32:671–677

    Article  CAS  Google Scholar 

  27. Jia Y, Polunovsky V, Bitterman PB, Wagner CR (2012) Cap-dependent translation initiation factor eIF4E: an emerging anticancer drug target. Med Res Rev 32:786–814

    Article  CAS  Google Scholar 

  28. Ptushkina M, von der Haar T, Karim MM, Hughes JM, McCarthy JE (1999) Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state. EMBO J 18:4068–4075

    Article  CAS  Google Scholar 

  29. Karim MM, Hughes JM, Warwicker J, Scheper GC, Proud CG, McCarthy JE (2001) A quantitative molecular model for modulation of mammalian translation by the eIF4E-binding protein 1. J Biol Chem 276:20750–20757

    Article  CAS  Google Scholar 

  30. Hughes JM, Ptushkina M, Karim MM, Koloteva N, von der Haar T, McCarthy JE (1999) Translational repression by human 4E-BP1 in yeast specifically requires human eIF4E as target. J Biol Chem 274:3261–3264

    Article  CAS  Google Scholar 

  31. Smialowski P, Martin-Galiano AJ, Mikolajka A, Girschick T, Holak TA, Frishman D (2007) Protein solubility: sequence based prediction and experimental verification. Bioinformatics 23:2536–2542

    Article  CAS  Google Scholar 

  32. Rohl CA, Baldwin RL (1997) Comparison of NH exchange and circular dichroism as techniques for measuring the parameters of the helix–coil transition in peptides. Biochemistry 36:8435–8442

    Article  CAS  Google Scholar 

  33. Chen YH, Yang JT, Chau KH (1974) Determination of the helix and β-form proteins in aqueous solution by circular dichroism. Biochemistry 13:3350–3359

    Article  CAS  Google Scholar 

  34. Hackl EV (2014) Limited proteolysis of natively unfolded protein 4E-BP1 in the presence of trifluoroethanol. Biopolymers 101:591–602

    Article  CAS  Google Scholar 

  35. Buck M (1998) Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q Rev Biophys 31:297–355

    Article  CAS  Google Scholar 

  36. Gast K, Siemer A, Zirwer D, Damaschun G (2001) Fluoroalcohol-induced structural changes of proteins: some aspects of cosolvent-protein interactions. Eur Biophys J 30:273–283

    Article  CAS  Google Scholar 

  37. Fletcher CM, McGuire AM, Gingras AC, Li H, Matsuo H, Sonenberg N, Wagner G (1998) 4E binding proteins inhibit the translation factor eIF4E without folded structure. Biochemistry 37:9–15

    Article  CAS  Google Scholar 

  38. Tanford C (1968) Protein denaturation. Adv Protein Chem 23:121–282

    Article  CAS  Google Scholar 

  39. Kuznetsova IM, Stepanenko OV, Turoverov KK, Zhu L, Zhou JM, Fink AL, Uversky VN (2002) Unraveling multistate unfolding of rabbit muscle creatine kinase. Biochim Biophys Acta 1596:138–155

    Article  CAS  Google Scholar 

  40. Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276:10737–10744

    Article  CAS  Google Scholar 

  41. Kjaergaard M, Nørholm AB, Hendus-Altenburger R, Pedersen SF, Poulsen FM, Kragelund BB (2010) Temperature-dependent structural changes in intrinsically disordered proteins: formation of alpha-helices or loss of polyproline II? Protein Sci 19:1555–1564

    Article  CAS  Google Scholar 

  42. Kumar N, Shukla S, Kumar S, Suryawanshi A, Chaudhry U, Ramachandran S, Maiti S (2008) Intrinsically disordered protein from a pathogenic mesophile Mycobacterium tuberculosis adopts structured conformation at high temperature. Proteins 71:1123–1133

    Article  CAS  Google Scholar 

  43. Permyakov SE (2012) Differential scanning microcalorimetry of intrinsically disordered proteins. Methods Mol Biol 896:283–296

    CAS  Google Scholar 

  44. Langridge TD, Tarver MJ, Whitten ST (2014) Temperature effects on the hydrodynamic radius of the intrinsically disordered N-terminal region of the p53 protein. Proteins 82:668–678

    Article  CAS  Google Scholar 

  45. Nettels D, Müller-Späth S, Küster F, Hofmann H, Haenni D, Rüegger S, Reymond L, Hoffmann A, Kubelka J, Heinz B et al (2009) Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proc Natl Acad Sci USA 106:20740–20745

    Article  CAS  Google Scholar 

  46. Tsvetkov P, Myers N, Moscovitz O, Sharon M, Prilusky J, Shaul Y (2012) Thermo-resistant intrinsically disordered proteins are efficient 20S proteasome substrates. Mol BioSyst 8:368–373

    Article  CAS  Google Scholar 

  47. Tantos A, Friedrich P, Tompa P (2009) Cold stability of intrinsically disordered proteins. FEBS Lett 583:465–469

    Article  CAS  Google Scholar 

  48. Geist L, Henen MA, Haiderer S, Schwarz TC, Kurzbach D, Zawadzka-Kazimierczuk A, Saxena S, Zerko S, Kozminski W, Hinderberger D, Konrat R (2013) Protonation-dependent conformational variability of intrinsically disordered proteins. Protein Sci 22:1196–1205

    Article  CAS  Google Scholar 

  49. Uversky VN, Fink AL (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim Biophys Acta 1698:131–153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Prof. John McCarthy for giving the opportunity to work in his laboratory and for many helpful discussions. The author also would like to thank Prof. Andrew Doig for help, critical comments and many valuable suggestions. This work was supported by the grant from Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen V. Hackl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hackl, E.V. Effect of Temperature on the Conformation of Natively Unfolded Protein 4E-BP1 in Aqueous and Mixed Solutions Containing Trifluoroethanol and Hexafluoroisopropanol. Protein J 34, 18–28 (2015). https://doi.org/10.1007/s10930-014-9595-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-014-9595-5

Keywords

Navigation