Skip to main content

Advertisement

Log in

Molecular Docking Investigation of the Binding Interactions of Macrocyclic Inhibitors with HCV NS3 Protease and its Mutants (R155K, D168A and A156V)

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Hepatitis C Virus (HCV) non-structural protein 3 (NS3) protease drug resistance poses serious challenges on the design of an effective treatment. Substrate Envelope Hypothesis, “the substrates of HCV NS3/4A protease have a consensus volume inside the active site called substrate envelope” is used to design potent and specific drugs to overcome this problem. Using molecular docking, we studied the binding interaction of the different inhibitors and protein and evaluated the effect of three different mutations (R155K, D168A and A156V) on the binding of inhibitors. P2–P4 macrocycles of 5A/5B and modified 5A/5B hexapeptide sequences have the best scores against the wild-type protein −204.506 and −206.823 kcal/mole, respectively. Also, charged P2–P4 macrocycles of 3/4A and 4A/4B hexapeptide sequences have low scores with the wild-type protein −200.467 and −203.186 kcal/mole, respectively. R155K mutation greatly affects the conformation of the compounds inside the active site. It inverts its orientations, and this is because the large and free side chain of K155 which restricts the conformation of the large P2–P4 macrocycle. The conformation of charged P2–P4 macrocycle of 3/4A hexapeptide sequence in wild-type, A156V and D168A proteins is nearly equal; while that of charged P2–P4 macrocycle of 4A/4B hexapeptide sequence is different. Nevertheless, these compounds have a slight increase of Van der Waals volume compared to that of substrates, they are potent against mutations and have good scores. Therefore, the suggested drugs can be used as an effective treatment solving HCV NS3/4A protease drug resistance problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HCV:

Hepatitis C Virus

NS3:

Non-structural protein 3

NS4A:

Non-structural protein 4A

FDA:

Food and drug administration

PEG IFN-α:

Pegylated interferon α

HIV-1:

Human immunodeficiency virus-1

PM3:

Parameterization model, version 3

MM3:

Molecular mechanics 3

MO-G:

Molecular orbital package

NS:

Non-structural protein

PMF:

Potential of mean force

References

  1. Pawlotsky JM (2012) Is hepatitis virus resistance to antiviral drugs a threat? Gastroenterology 142:1369–1372

    Article  Google Scholar 

  2. Vermehren J, Sarrazin C (2012) The role of resistance in HCV treatment. Best Pract Res Clin Gastroenterol 26(4):487–503

    Article  CAS  Google Scholar 

  3. Welsch C, Zeuzem S (2012) Clinical relevance of HCV antiviral drug resistance. Curr Opin Virol 2(5):651–655

    Article  CAS  Google Scholar 

  4. Kairys V, Gilson MK, Lather V, Schiffer CA, Fernandes MX (2009) Toward the design of mutation-resistant enzyme inhibitors: further evaluation of the substrate envelope hypothesis. Chem Biol Drug Des 74:234–245

    Article  CAS  Google Scholar 

  5. Romano KP, Ali A, Royer WE, Schiffer CA (2010) Drug resistance against HCV NS3/4A inhibitors is defined by the balance of substrate recognition versus inhibitor binding. Proc Natl Acad Sci 107(49):20986–20991

    Article  CAS  Google Scholar 

  6. Romano KP, Laine JM, Deveau LM, Cao H, Massi F, Schiffer CA (2011) Molecular mechanisms of viral and host cell substrate recognition by hepatitis C virus NS3/4A protease. J Virol 85(13):6106–6116

    Article  CAS  Google Scholar 

  7. Pan D, Xue W, Zhang W, Liu H (1820) Yao X (2012) Understanding the drug resistance mechanism of hepatitis C virus NS3/4A to ITMN-191 due to R155 K, A156 V, D168A/E mutations: a computational study. Biochim Biophys Acta 10:1526–1534

    Google Scholar 

  8. Romano KP, Ali A, Aydin C, Soumana D, Ozen A, Deveau LM, Silver C, Cao H, Newton A, Petropoulos CJ, Huang W, Schiffer CA (2012) The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors. PLoS Pathog 8(7):e1002832. doi:10.1371/journal.ppat.1002832

    Article  CAS  Google Scholar 

  9. Xue W, Wang M, Jin X, Liu H, Yao X (2012) Understanding the structural and energetic basis of inhibitor and substrate bound to the full-length NS3/4A: insights from molecular dynamics simulation, binding free energy calculation and network analysis. Mol Bio Syst 8:2753–2765

    CAS  Google Scholar 

  10. Manns MP, Foster GR, Rockstroh JK, Zeuzem S, Zoulim F, Houghton M (2007) The way forward in HCV treatment–finding the right path. Nat Rev Drug Discov 6:991–1000

    Article  CAS  Google Scholar 

  11. Raney KD, Sharma SD, Moustafa IM, Cameron CE (2010) Hepatitis C virus non-structural protein 3 (HCV NS3): a multifunctional antiviral target. J Biol Chem 285(30):22725–22731

    Article  CAS  Google Scholar 

  12. Lin C (2006) HCV NS3-4A Serine Protease a book chapter in Hepatitis C viruses: genomes and molecular biology. In: Tan S (ed), Horizon Bioscience, p 163-206

  13. Chen KX, Njoroge FG (2010) The journey to the discovery of Boceprevir: an NS3-NS4 HCV protease inhibitor for the treatment of chronic hepatitis C. Prog Med Chem 49:1–36

    Article  CAS  Google Scholar 

  14. Chevaliez S, Pawlotsky JM (2007) Interferon-based therapy of hepatitis C. Adv Drug Deliv Rev 59:1222–1241

    Article  CAS  Google Scholar 

  15. Avolio S, Summa V (2010) Advances in the development of macrocyclic inhibitors of hepatitis C virus NS3-4A protease. Curr Top Med Chem 10:1403–1422

    Article  CAS  Google Scholar 

  16. Venkatraman S, Njoroge FG (2009) Macrocyclic inhibitors of HCV NS3 protease. Expert Opin Ther Patents 19(9):1277–1303

    Article  CAS  Google Scholar 

  17. Elfiky AA, Elshemey WM, Gawad WA, Desoky OS (2013) Molecular modeling comparison of the performance of NS5b polymerase inhibitor (PSI-7977) on prevalent HCV genotypes. Protein J 32(1):75–80

    Article  CAS  Google Scholar 

  18. Saleh NA, Elfiky AA, Ezat AA, Elshemey WM, Ibrahim M (2014) The electronic and QSAR properties of modified Telaprevir compounds as HCV NS3 protease inhibitors. J Comp Theo NanoSci 11:1–5

    Article  Google Scholar 

  19. Ibrahim M, Saleh NA, Elshemey WM, Elsayed AA (2012) Hexapeptide functionality of cellulose as NS3 protease inhibitors. Med Chem 8:6–10

    Article  Google Scholar 

  20. Ibrahim M, Saleh NA, Elshemey WM, Elsayed AA (2012) Fullerene derivative as anti-HIV protease inhibitor: molecular modeling and QSAR approaches. Mini Rev Med Chem 12(6):447–451

    Article  CAS  Google Scholar 

  21. Huang SY, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11:3016–3034

    Article  CAS  Google Scholar 

  22. Stewart JJP (2009) SCIGRESS, Version 2.9.0, Fujitsu Limited, United States

  23. Ganguly S, Bahare RS (2013) Molecular docking studies of novel thiazolidinedione analogs as HIV-1-RT inhibitors. Med Chem Res 22:3350–3363

    Article  CAS  Google Scholar 

  24. Mostafa HIA, El-bialy NS, Ezat AA, Saleh NA, Ibrahim MA, QSAR analysis and molecular docking simulation of suggested Peptidomimetic NS3 Protease Inhibitors. Curr Comp aided Drug Des (in press)

  25. Schiering N, Arcy AD, Villard F, Simić O, Kamke M, Monnet G, Hassiepen U, Svergun DI, Pulfer R, Eder J, Raman P, Bodendorf U (2011) A macrocyclic HCV NS3/4A protease inhibitor interacts with protease and helicase residues in the complex with its full-length target. Proc Natl Acad Sci 108(52):21052–21056

    Article  CAS  Google Scholar 

  26. Kroemer RT (2007) Structure-based drug design: docking and scoring. Curr Prot Pep Sci 8:312–328

    Article  CAS  Google Scholar 

  27. Muegge I (2006) PMF scoring revisited. J Med Chem 49:5895–5902

    Article  CAS  Google Scholar 

  28. http://poseview.zbh.uni-hamburg.de/poseview. Accessed 22 Nov 2013

  29. Steinkühler C, Biasiol G, Brunetti M, Urbani A, Koch U, Cortese R, Pessi A, Francesco RD (1998) Product inhibition of the hepatitis C virus NS3 protease. Biochemistry 37:8899–8905

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Ezat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezat, A.A., El-Bialy, N.S., Mostafa, H.I.A. et al. Molecular Docking Investigation of the Binding Interactions of Macrocyclic Inhibitors with HCV NS3 Protease and its Mutants (R155K, D168A and A156V). Protein J 33, 32–47 (2014). https://doi.org/10.1007/s10930-013-9538-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9538-6

Keywords

Navigation