Skip to main content
Log in

Fusion with Anticodon Binding Domain of GluRS is Not Sufficient to Alter the Substrate Specificity of a Chimeric Glu-Q-RS

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Glutamyl-queuosine-tRNAAsp synthetase (Glu-Q-RS) is a paralog of glutamyl-tRNA synthetase (GluRS) and is found in more than forty species of proteobacteria, cyanobacteria, and actinobacteria. Glu-Q-RS shows striking structural similarity with N-terminal catalytic domain of GluRS (NGluRS) but it lacks the C-terminal anticodon binding domain (CGluRS). In spite of structural similarities, Glu-Q-RS and NGluRS differ in their functional properties. Glu-Q-RS glutamylates the Q34 nucleotide of the anticodon of tRNAAsp whereas NGluRS constitutes the catalytic domain of GluRS catalyzing the transfer of Glu on the acceptor end of tRNAGlu. Since NGluRS is able to catalyze aminoacylation of only tRNAGlu the glutamylation capacity of tRNAAsp by Glu-Q-RS is surprising. To understand the substrate specificity of Glu-Q-RS we undertook a systemic approach by investigating the biophysical and biochemical properties of the NGluRS (1–301), CGluRS (314–471) and Glu-Q-RS-CGluRS, (1–298 of Glu-Q-RS fused to 314–471 from GluRS). Circular dichroism, fluorescence spectroscopy and differential scanning calorimetry analyses revealed absence of N-terminal domain (1–298 of Glu-Q-RS) and C-terminal domain (314–471 from GluRS) communication in chimera, in contrast to the native full length GluRS. The chimeric Glu-Q-RS is still able to aminoacylate tRNAAsp but has also the capacity to bind tRNAGlu. However the chimeric protein is unable to aminoacylate tRNAGlu probably as a consequence of the lack of domain–domain communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Glu-Q-RS:

Glutamyl-queuosine-tRNAAsp Synthetase

GluRS:

Glutamyl-tRNA synthetase

NGluRS:

N-terminal catalytic domain of GluRS

CGluRS:

C-terminal anticodon binding domain

aaRS:

Aminoacyl tRNA synthetase

Ec :

Escherichia coli

Tth :

Thermus thermophilus

CP:

Connective peptide

l-Glu:

l-Glutamic acid

IPTG:

Isopropyl β-D-1-thiogalactopyranoside

PMSF:

Phenylmethanesulfonyl fluoride

CD:

Circular dichroism

UV:

Ultra violet

MRE:

Mean residue ellipticity

θ :

Observed ellipticity

GdnHCl:

Guanidine chloride

f D :

Fraction unfolded

∆G:

Free energy change

m :

Slope of the transition

DSC:

Differential scanning calorimetry

Tm :

Midpoint of transition

Kd :

Dissociation constant

GoA:

Glutamol-AMP

References

  1. Ibba M, Söll D (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650

    Article  CAS  Google Scholar 

  2. Eriani G, Delarue M, Poch O, Gangloff J, Moras D (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–206

    Article  CAS  Google Scholar 

  3. Pham Y, Li L, Kim A, Erdogan O, Weinreb V, Butterfoss GL, Kuhlman B, Carter CW Jr (2007) A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases. Mol Cell 25:851–862

    Article  CAS  Google Scholar 

  4. Saha R, Dasgupta S, Basu G, Roy S (2009) A chimaeric glutamyl: glutaminyl-tRNA synthetase: implications for evolution. Biochem J 417:449–455

    Article  CAS  Google Scholar 

  5. Alexander RW, Schimmel P (2001) Domain-domain communication in aminoacyl-tRNA synthetases. Prog Nucleic Acids Res Mol Biol 69:317–349

    Article  CAS  Google Scholar 

  6. Schimmel P, Ribas de Pouplana L (2000) Footprints of aminoacyl-tRNA synthetases are everywhere. Trends Biochem Sci 25:207–209

    Article  CAS  Google Scholar 

  7. Olmedo-Verd E, Santamaría-Gómez J, Ochoa de Alda JA, Ribas de Pouplana L, Luque I (2011) Membrane anchoring of aminoacyl-tRNA synthetases by convergent acquisition of a novel protein domain. J Biol Chem 286:41057–41068

    Article  CAS  Google Scholar 

  8. Ibba M, Söll D (2004) Aminoacyl-tRNAs: setting the limits of the genetic code. Genes Dev 18:731–738

    Article  CAS  Google Scholar 

  9. Sampath P, Mazumder B, Seshadri V, Gerber CA, Chavatte L, Kinter M, Ting SM, Dignam JD, Kim S, Driscoll DM, Fox PL (2004) Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation. Cell 119:195–208

    Article  CAS  Google Scholar 

  10. Ibba M, Francklyn C (2004) Turning tRNA upside down: when aminoacylation is not a prerequisite to protein synthesis. Proc Natl Acad Sci USA 101:7493–7494

    Article  CAS  Google Scholar 

  11. Salazar JC, Ambrogelly A, Crain PF, McCloskey JA, Söll D (2004) A truncated aminoacyl–tRNA synthetase modifies RNA. Proc Natl Acad Sci USA 101:7536–7541

    Article  CAS  Google Scholar 

  12. Dubois DY, Blaise M, Becker HD, Campanacci V, Keith G, Giegé R, Cambillau C, Lapointe J, Kern D (2004) An aminoacyl-tRNA synthetase-like protein encoded by the Escherichia coli yadB gene glutamylates specifically tRNAAsp. Proc Natl Acad Sci USA 101:7530–7535

    Article  CAS  Google Scholar 

  13. Fujita N, Mori H, Yura T, Ishihama A (1994) Systematic sequencing of the Escherichia coli genome: analysis of the 2.4–4.1 min (110,917-193,643 bp) region. Nucleic Acids Res 22:1637–1639

    Article  CAS  Google Scholar 

  14. Gagnon Y, Lacoste L, Champagne N, Lapointe J (1996) Widespread use of the glu-tRNAGln transamidation pathway among bacteria. A member of the alpha purplebacteria lacks glutaminyl-trna synthetase. J Biol Chem 271:14856–14863

    Article  CAS  Google Scholar 

  15. Campanacci V, Dubois DY, Becker HD, Kern D, Spinelli S, Valencia C, Pagot F, Salomoni A, Grisel S, Vincentelli R, Bignon C, Lapointe J, Giegé R, Cambillau C (2004) The Escherichia coli YadB gene product reveals a novel aminoacyl-tRNA synthetase like activity. J Mol Biol 337:273–283

    Article  CAS  Google Scholar 

  16. Blaise M, Becker HD, Lapointe J, Cambillau C, Giegé R, Kern D (2005) Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon. Biochimie 87:847–861

    Article  CAS  Google Scholar 

  17. Blaise M, Becker HD, Keith G, Cambillau C, Lapointe J, Giegé R, Kern D (2004) A minimalist glutamyl-tRNA synthetase dedicated to aminoacylation of the tRNAAsp QUC anticodon. Nucleic Acids Res 32:2768–2775

    Article  CAS  Google Scholar 

  18. Kern D, Lapointe J (1979) Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Study of the interactions with its substrates. Biochemistry 25:5809–5818

    Article  Google Scholar 

  19. Dubois DY, Blais SP, Huot JL, Lapointe J (2009) A C-truncated glutamyl-tRNA Synthetase specific for tRNA (Glu) is stimulated by its free complementary distal domain: mechanistic and evolutionary implications. Biochemistry 48:6012–6021

    Article  CAS  Google Scholar 

  20. Saha R, Dasgupta S, Banerjee R, Mitra-Bhattacharyya A, Söll D, Basu G, Roy S (2012) A functional loop spanning distant domains of glutaminyl-tRNA synthetase also stabilizes a molten globule state. Biochemistry 51:4429–4437

    Article  CAS  Google Scholar 

  21. Dasgupta S, Saha R, Dey C, Banerjee R, Roy S, Basu G (2009) The role of the catalytic domain of E. coli GluRS in tRNAGln discrimination. FEBS Lett 583:2114–2120

    Article  CAS  Google Scholar 

  22. Madore E, Florentz C, Giegé R, Sekine S, Yokoyama S, Lapointe J (1999) Effect of modified nucleotides on Escherichia coli tRNAGlu structure and on its aminoacylation by glutamyl-tRNA synthetase. Predominant and distinct roles of the mnm5 and s2 modifications of U34. Eur J Biochem 266:1128–1135

    Article  CAS  Google Scholar 

  23. Chen YH, Yang JT, Martinez HM (1972) Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11:4120–4131

    Article  CAS  Google Scholar 

  24. Gull N, Sen P, Khan RH, Kabir-ud-Din (2009) Spectroscopic studies on the comparative interaction of cationic single-chain and gemini surfactants with human serum albumin. J Biochem 145:67–77

    Article  CAS  Google Scholar 

  25. Greene RF, Pace CN (1974) Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. J Biol Chem 249:5388–5393

    CAS  Google Scholar 

  26. Saito Y, Wada A (1983) Comparative study of GuHCl denaturation of globular proteins I. Spectroscopic and chromatographic analysis of the denaturation curves of ribonuclease A, cytochrome c, and pepsinogen. Biopolymers 22:2105–2122

    Article  CAS  Google Scholar 

  27. Pace CN (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves. Method Enzymol 131:266–280

    Article  CAS  Google Scholar 

  28. Scholtz JM (1995) Conformational stability of HPr: the histidine-containing phosphocarrier protein from Bacillus subtilis. Protein Sci 4:35–43

    Article  CAS  Google Scholar 

  29. Matthews CR, Crisanti MM (1981) Urea-induced unfolding of the alpha subunit of tryptophan synthease: evidence for a multistate process. Biochemistry 20:784–792

    Article  CAS  Google Scholar 

  30. Scholtz JM, Grimsley GR, Pace CN (2009) Solvent denaturation of proteins and interpretations of the m value. Method Enzymol 466:549–565

    Article  CAS  Google Scholar 

  31. Shaw KL, Scholtz JM, Pace CN, Grimsley GR (2009) Determining the conformational stability of a protein using urea denaturation curves. Method Mol Biol 490:41–55

    Article  CAS  Google Scholar 

  32. Mandal AK, Samaddar S, Banerjee R, Lahiri S, Bhattacharyya A, Roy S (2003) Glutamate counteracts the denaturing effect of urea through its effect on the denatured state. J Biol Chem 278:36077–36084

    Article  CAS  Google Scholar 

  33. Banerjee R, Mandal AK, Saha R, Guha S, Samaddar S, Bhattacharyya A, Roy S (2003) Solvation change and ion release during aminoacylation by aminoacyl-tRNA synthetases. Nucleic Acid Res 31:6035–6042

    Article  CAS  Google Scholar 

  34. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  35. Roy S (2004) Fluorescence quenching methods to study protein–nucleic acid interactions. Method Enzymol 379:175–187

    Article  CAS  Google Scholar 

  36. Bruylants G, Wouters J, Michaux WC (2005) Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem 12:2011–2020

    Article  CAS  Google Scholar 

  37. Maity H, O’Dell C, Srivastava A, Goldstein J (2009) Effects of arginine on photostability and thermal stability of IgG1 monoclonal antibodies. Curr Pharm Biotechnol 10:761–766

    Article  CAS  Google Scholar 

  38. Paulsson M, Hegg PO, Castberg HB (1985) Thermal stability of whey proteins studied by differential scanning calorimetry. Thermochim Acta 95:435–440

    Article  CAS  Google Scholar 

  39. Lapointe J, Delcuve G (1975) Thermosensitive mutants of Escherichia coli K-12 altered in the catalytic subunit and in a regulatory factor of the glutamy-transfer ribonucleic acid synthetase. J Bacteriol 122:352–358

    CAS  Google Scholar 

  40. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The swiss-model repository and associated resources. Nucleic Acid Res 37:D387–D392

    Article  CAS  Google Scholar 

  41. Sekine S, Nureki O, Dubois DY, Bernier S, Chênevert R, Lapointe J, Vassylyev DG, Yokoyama S (2003) ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding. EMBO J 22:676–688

    Article  CAS  Google Scholar 

  42. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  CAS  Google Scholar 

  43. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  Google Scholar 

  44. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21

    Article  CAS  Google Scholar 

  45. Kelly SM, Price NC (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci 1:349–384

    Article  CAS  Google Scholar 

  46. Carra JH, Privalov PL (1995) Energetics of denaturation and m values of staphylococcal nuclease mutants. Biochemistry 34:2034–2041

    Article  CAS  Google Scholar 

  47. Agashe VR, Udgaonkar JB (1995) Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride. Biochemistry 34:3286–3299

    Article  CAS  Google Scholar 

  48. Callis PR, Liu T (2004) Quantitative prediction of fluorescence quantum yields for tryptophan in proteins. J Phys Chem B 108:4248–4259

    Article  CAS  Google Scholar 

  49. Hammamieh R, Yang DC (2001) Magnesium ion-mediated binding to tRNA by an amino-terminal peptide of a class II tRNA synthetase. J Biol Chem 276:428–433

    Article  CAS  Google Scholar 

  50. Blaise M, Olieric V, Sauter C, Lorber B, Roy B, Karmakar S, Banerjee R, Becker HD, Kern D (2008) Crystal structure of glutamyl-Queuosine tRNAAsp synthetase complexed with l-glutamate: structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNAAsp anticodon. J Mol Biol 381:1224–1237

    Article  CAS  Google Scholar 

  51. Patthy L (2008) Evolution of paralogous proteins. Protein evolution. John Wiley and sons Blackwell Publishing Ltd, Chichester

    Google Scholar 

  52. Siatecka M, Rozek M, Barciszewski J, Mirande M (1998) Modular evolution of the Glx-tRNA synthetase family–rooting of the evolutionary tree between the bacteria and archaea/eukarya branches. Eur J Biochem 256:80–87

    Article  CAS  Google Scholar 

  53. Sekine S, Nureki O, Tateno M, Yokoyama S (1999) The identity determinants required for the discrimination between tRNAGlu and tRNAAsp by glutamyl-tRNA synthetase from Escherichia coli. Eur J Biochem 261:354–360

    Article  CAS  Google Scholar 

  54. Rogers MJ, Adachi T, Inokuchi H, Söll D (1994) Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase. Proc Natl Acad Sci USA 91:291–295

    Article  CAS  Google Scholar 

  55. Sherman JM, Thomann HU, Söll D (1996) Functional connectivity between tRNA binding domains in glutaminyl-tRNA synthetase. J Mol Biol 256:818–828

    Article  CAS  Google Scholar 

  56. Uter NT, Perona JJ (2004) Long-range intramolecular signaling in a tRNA synthetase complex revealed by pre-steady-state kinetics. Proc Natl Acad Sci USA 101:14396–14401

    Article  CAS  Google Scholar 

  57. Moulinier L, Eiler S, Eriani G, Gangloff J, Thierry JC, Gabriel K, McClain WH, Moras D (2001) The structure of an AspRS-tRNA(Asp) complex reveals a tRNA-dependent control mechanism. EMBO J 20:5290–5301

    Article  CAS  Google Scholar 

  58. Sauter C, Lorber B, Cavarelli J, Moras D, Giegé R (2000) The free yeast aspartyl-tRNA synthetase differs from the tRNA (Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain. J Mol Biol 299:1313–1324

    Article  CAS  Google Scholar 

  59. Tzenq SR, Kalodimos CG (2012) Protein activity regulation by conformational entropy. Nature 488:236–240

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Gautam Basu, Department of Biophysics, Bose Institute for allowing us to use the CD instrument. Dr. Saumya Dasgupta is acknowledged for his assistance during CD measurements. Ec His-tagged GluRS overproducing strain, pKR15 plasmid expressing Ec tRNAGlu and JP1449 (DE3) were kindly gifted by Professor Jacques Lapointe (Department of Biochemistry and Microbiology, Université Laval, Québec, Canada). We also like to thank Professor Gabor Igloi, University of Freiburg, Germany for critical reading of the manuscript and for providing in vitro transcribed jack bean tRNAArg. Molecular Mechanism of Disease and Drug Action (MMDDA) project (Grant 11-R&D-SIN-5.04) Department of Atomic Energy, Govt. of India is kindly acknowledged for providing the fund for purchasing differential scanning calorimetry (DSC) instrument. S.R. thanks to University of Calcutta for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, S., Blaise, M., Roy, B. et al. Fusion with Anticodon Binding Domain of GluRS is Not Sufficient to Alter the Substrate Specificity of a Chimeric Glu-Q-RS. Protein J 33, 48–60 (2014). https://doi.org/10.1007/s10930-013-9537-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9537-7

Keywords

Navigation