Skip to main content

Determining the Conformational Stability of a Protein Using Urea Denaturation Curves

  • Protocol
  • First Online:
Protein Structure, Stability, and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 490))

Abstract

The stability of globular proteins is an important factor in determining their usefulness in basic research and medicine. A number of environmental factors contribute to the conformational stability of a protein, including pH, temperature, and ionic strength. In addition, variants of proteins may show remarkable differences in stability from their wild-type form. In this chapter, we describe the method and analysis of urea denaturation curves to determine the conformational stability of a protein. This involves relatively simple experiments that can be done in a typical biochemistry laboratory, especially when using ordinary spectroscopic techniques to follow unfolding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanford, C. (1964) Isothermal unfolding of globular proteins in aqueous urea solutions. J Am Chem Soc 86, 2050–2059.

    Article  CAS  Google Scholar 

  2. Pace, C. N., Grimsley, G. R., Scholtz, J. M. (2005) Denaturation of proteins by urea and guanidine hydrochloride, in (Kiefhaber, T., ed.) Protein Folding Handbook, pp. 45–69. Wiley-VCH Verlag GmbH & Co. KGaA, Hamburg, Germany.

    Chapter  Google Scholar 

  3. Goldenberg, D. P. (2003) Computational simulation of the statistical properties of unfolded proteins. J Mol Biol 326, 1615–1633.

    Article  PubMed  CAS  Google Scholar 

  4. Schellman, J. A.(2003) Protein stability in mixed solvents: a balance of contact interaction and excluded volume. Biophys J 85, 108–125.

    Article  PubMed  CAS  Google Scholar 

  5. Timasheff, S. N., Xie, G. (2003) Preferential interactions of urea with lysozyme and their linkage to protein denaturation. Biophys Chem 105, 421–448.

    Article  PubMed  CAS  Google Scholar 

  6. Courtenay, E. S., Capp, M. W., Saecker, R. M., et al. (2000) Thermodynamic analysis of interactions between denaturants and protein surface exposed on unfolding: interpretation of urea and guanidinium chloride m-values and their correlation with changes in accessible surface area (ASA) using preferential interaction coefficients and the local-bulk domain model. Proteins Suppl 4, 72–85.

    Article  Google Scholar 

  7. Monera, O. D., Kay, C. M., Hodges, R. S. (1994) Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Sci 3, 1984–1991.

    Article  PubMed  CAS  Google Scholar 

  8. Schellman, J. A., Gassner, N. C. (1996) The enthalpy of transfer of unfolded proteins into solutions of urea and guanidinium chloride. Biophys Chem 59, 259–275.

    Article  PubMed  CAS  Google Scholar 

  9. Makhatadze, G. I. (1999) Thermodynamics of protein interactions with urea and guanidinium hydrochloride. J Phys Chem B 103, 4781–4785.

    Article  CAS  Google Scholar 

  10. Prakash, V., Loucheux, C., Scheufele, S., et al. (1981) Interactions of proteins with solvent components in 8 M urea. Arch Biochem Biophys 210, 455–464.

    Article  PubMed  CAS  Google Scholar 

  11. Santoro, M. M., Bolen, D. W. (1992) A test of linear extrapolation of unfolding free energy changes over an extended denaturant concentration range. Biochemistry 31, 4901–4907.

    Article  PubMed  CAS  Google Scholar 

  12. Santoro, M. M., Bolen, D. W. (1988) Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry 27, 8063–8068.

    Article  PubMed  CAS  Google Scholar 

  13. Shirley, B. A., Stanssens, P., Hahn, U., et al. (1992) Contribution of hydrogen bonding to the conformational stability of ribonuclease T1. Biochemistry 31, 725–732.

    Article  PubMed  CAS  Google Scholar 

  14. Pace, C. N., Alston, R. W., Shaw, K. L. (2000) Charge–charge interactions influence the denatured state ensemble and contribute to protein stability. Protein Sci 9, 1395–1398.

    Article  PubMed  CAS  Google Scholar 

  15. Becktel, W. J., Schellman, J. A. (1987) Protein stability curves. Biopolymers 26, 1859–1877.

    Article  PubMed  CAS  Google Scholar 

  16. Myers, J. K., Pace, C. N., Scholtz, J. M. (1995) Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci 4, 2138–2148.

    Article  PubMed  CAS  Google Scholar 

  17. Shortle, D. (1997) Structure prediction: folding proteins by pattern recognition. Curr Biol 7, R 151–154.

    Article  PubMed  CAS  Google Scholar 

  18. Neri, D., Billeter, M., Wider, G., et al. (1992) NMR determination of residual structure in a urea-denatured protein, the 434-Repressor. Science 257, 1559–1563.

    Article  PubMed  CAS  Google Scholar 

  19. Religa, T. L., Markson, J. S., Mayor, U., et al. (2005) Solution structure of a protein denatured state and folding intermediate. Nature 437, 1053–1056.

    Article  PubMed  CAS  Google Scholar 

  20. Pace, C. N., Shaw, K. L. (2000) Linear extrapolation method of analyzing solvent denaturation curves. Proteins 4, 1–7.

    Article  PubMed  Google Scholar 

  21. Shortle, D. (1996) The denatured state (the other half of the folding equation) and its role in protein stability. FASEB J 10, 27–34.

    PubMed  CAS  Google Scholar 

  22. Anil, B., Craig-Schapiro, R., Raleigh, D. P. (2006) Design of a hyperstable protein by rational consideration of unfolded state interactions. J Am Chem Soc 128, 3144–3145.

    Article  PubMed  CAS  Google Scholar 

  23. Auton, M., Holthauzen, L. M., Bolen, D. W. (2007) Anatomy of energetic changes accompanying urea-induced protein denaturation. Proc Natl Acad Sci US A 104, 15317–15322.

    Google Scholar 

  24. Pace, C. N., Laurents, D. V., Thomson, J. A. (1990) pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1. Biochemistry 29, 2564–2572.

    Article  PubMed  CAS  Google Scholar 

  25. Grimsley, G. R., Huyghues-Despointes, B. M-P., Pace, C. N., et al. (2004) Measuring the conformational stability of a protein, in (Simpson, R. J., ed.), Purifying Proteins For Proteomics, pp. 535–566. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  26. Pace, C. N., Scholtz, J. M. (1997) Measuring the conformational stability of a protein, in (Creighton, T. E., ed.), Protein Structure: A Practical Approach. pp. 299–321. Oxford University Press, London.

    Google Scholar 

  27. Pace, C. N., Laurents, D. V. (1989) A new method for determining the heat capacity change for protein folding. Biochemistry 28, 2520–2525.

    Article  PubMed  CAS  Google Scholar 

  28. Nicholson, E. M., Scholtz, J. M. (1996) Conformational stability of the Escherichia coli HPr protein: test of the linear extrapolation method and a thermodynamic characterization of cold denaturation. Biochemistry 35, 1 369–11378.

    Google Scholar 

  29. Hagel, P., Gerding, J., Fieggen, W., et al. (1971) Cyanate formation in solutions of urea. I. Calculation of cyanate concentrations at different temperature and pH. Biochim. Biophys Acta 243, 366–373.

    PubMed  CAS  Google Scholar 

  30. Stark, G. R. (1965) Reactions of cyanate with functional groups of proteins. 3. Reactions with amino and carboxyl groups. Biochemistry 4, 1030–1036.

    Article  PubMed  CAS  Google Scholar 

  31. Pace, C. N., Shirley, B. A., Thomson, J. A. (1989) Measuring the conformational stability of a protein, in (Creighton, T. E., ed.), Protein Structure: A Practical Approach, pp.311–329. IRL Press, Oxford.

    Google Scholar 

  32. Tanford, C. (1970) Protein denaturation. C. Theoretical models for the mechanism of denaturation. Adv Protein Chem 24, 1–95.

    Article  PubMed  CAS  Google Scholar 

  33. Pace, C. N. (1975) The stability of globular proteins. Crit Rev Biochem Mol 3, 1–43.

    Article  CAS  Google Scholar 

  34. Greene, R. F. J., Pace, C. N. (1974) Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. J Biol Chem 249, 5388–5393.

    PubMed  CAS  Google Scholar 

  35. Kawahara, K., Tanford, C. (1966) Viscosity and density of aqueous solutions of urea and guanidine hydrochloride. J Biol Chem 241, 3228–3232.

    PubMed  CAS  Google Scholar 

  36. Warren, J. R., Gordon, J. A. (1966) On the refractive indices of aqueous solutions of urea. J Phys Chem 70, 297–300.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shaw, K.L., Scholtz, J.M., Pace, C.N., Grimsley, R.G. (2009). Determining the Conformational Stability of a Protein Using Urea Denaturation Curves. In: Shriver, J. (eds) Protein Structure, Stability, and Interactions. Methods in Molecular Biology, vol 490. Humana Press. https://doi.org/10.1007/978-1-59745-367-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-367-7_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-954-3

  • Online ISBN: 978-1-59745-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics