Skip to main content

Advertisement

Log in

Purification and Characterization of Antioxidant Peptides from Leukocyte Extract of Crocodylus siamensis

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Antioxidant peptides were isolated from the leukocyte extract of the Siamese crocodile, Crocodylus siamensis. Crocodile leukocyte was extracted by a combination of methods including freeze-thawing, acetic acid extraction and homogenization. The peptides in the leukocyte extract were purified by anion exchange chromatography and reversed phase-high performance liquid chromatography. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay was used to evaluate the antioxidant activity of the elution peaks at each purification step. As a result, there were two purified peptides exhibiting strong antioxidant activity in reducing free radicals on DPPH molecules. The amino acid sequences of these peptides were determined by LC-MS/MS as TDVLGLPAK (912.5 Da) and DPNAALPAGPR (1,148.6 Da), and their IC50 values were 153.4 and 95.7 μM, respectively. The results of this study therefore indicate that leukocyte extract of C. siamensis contains peptides with antioxidant activity which could be used as a novel antioxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

hRBCs:

Human red blood cells

IC50 :

Half maximal inhibitory concentration

TFA:

Trifluoroacetic acid

References

  1. Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1:441–4452

    CAS  Google Scholar 

  2. Becker EM, Nissen LR, Skibsted LH (2004) Antioxidant evaluation protocols: food quality or health effects. Eur Food Res Technol 219:561–571

    Article  CAS  Google Scholar 

  3. Middleton E Jr, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    CAS  Google Scholar 

  4. Sampath Kumar NS, Nazeer RA, Jaiganesh R (2011) Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides 32:1496–1501

    Article  CAS  Google Scholar 

  5. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    Article  CAS  Google Scholar 

  6. Sharma S, Singh R, Rana S (2011) Bioactive peptides: a review. Int J Bioautomation 15:223–250

    CAS  Google Scholar 

  7. Hwang JY, Shyu YS, Wang YT, Hsu CK (2010) Antioxidative properties of protein hydrolysate from defatted peanut kernels treated with esperase. Food Sci Technol 43:285–290

    CAS  Google Scholar 

  8. Li XX, Han LJ, Chen LJ (2008) In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal. J Sci Food Agric 88:1660–1666

    Article  CAS  Google Scholar 

  9. Megías C, Pedroche J, Yust MM, Girón-Calle J, Alaiz M, Millán F (2008) Production of copper chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin. Food Sci Technol 41:1973–1977

    Google Scholar 

  10. Je JY, Qian ZJ, Byun HG, Kim SK (2007) Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem 42:840–846

    Article  CAS  Google Scholar 

  11. Qian ZJ, Jung WK, Kim SK (2008) Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresour Technol 99:1690–1698

    Article  CAS  Google Scholar 

  12. Sakanaka S, Tachibana Y (2006) Active oxygen scavenging activity of egg-yolk protein hydrolysates and their effects on lipid oxidation in beef and tuna homogenates. Food Chem 95:243–249

    Article  CAS  Google Scholar 

  13. Merchant ME, Pallansch M, Paulman RL, Wells JB, Nalca A, Ptak R (2005) Antiviral activity of serum from the American alligator (Alligator mississippiensis). Antiviral Res 66:35–38

    Article  CAS  Google Scholar 

  14. Merchant ME, Roche C, Elsey RM, Prudhomme J (2003) Antibacterial properties of serum from the American alligator (Alligator mississippiensis). Comp Biochem Physiol B Biochem Mol Biol 136:505–513

    Article  Google Scholar 

  15. Merchant ME, Leger N, Jerkins E, Mills K, Pallansch MB, Paulman RL, Ptak RG (2006) Broad spectrum antimicrobial activity of leukocyte extracts from the American alligator (Alligator mississippiensis). Vet Immunol Immunopathol 110:221–228

    Article  Google Scholar 

  16. Preecharram S, Daduang S, Bunyatrachata W, Araki T, Thammasirirak S (2008) Antibacterial activity from Siamese crocodile (Crocodylus siamensis) serum. Afr J Biotechnol 7:3121–3128

    CAS  Google Scholar 

  17. Preecharram S, Jearranaiprepame P, Daduang S, Temsiripong Y, Somdee T, Fukamizo T, Svasti J, Araki T, Thammasirirak S (2010) Isolation and characterisation of crocosin, an antibacterial compound from crocodile (Crocodylus siamensis) plasma. Anim Sci J 81:393–401

    Article  CAS  Google Scholar 

  18. Kommanee J, Preecharram S, Daduang S, Temsiripong Y, Dhiravisit A, Yamada Y, Thammasirirak S (2012) Antibacterial activity of plasma from crocodile (Crocodylus siamensis) against pathogenic bacteria. ACMA 11:22

    Google Scholar 

  19. Pata S, Yaraksa N, Daduang S, Temsiripong Y, Svasti J, Araki T, Thammasirirak S (2011) Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts. Dev Comp Immunol 35:545–553

    Article  CAS  Google Scholar 

  20. Srihongthong S, Pakdeesuwan A, Daduang S, Araki T, Dhiravisit A, Thammasirirak S (2012) Complete amino acid sequence of globin chains and biological activity of fragmented crocodile hemoglobin (Crocodylus siamensis). Protein J 31:466–476

    Article  CAS  Google Scholar 

  21. Jandaruang J, Siritapetawee J, Songsiriritthigul C, Daduang S, Dhiravisit A, Thumanu K, Krittanai C, Thammasirirak S (2012) The effects of temperature and pH on secondary structure and antioxidant activity of Crocodylus siamensis hemoglobin. Protein J 31:43–50

    Article  CAS  Google Scholar 

  22. Rieger AM, Barreda DR (2011) Antimicrobial mechanisms of fish leukocytes. Dev Comp Immunol 35:1238–1245

    Article  CAS  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  24. Arcan I, Yemenicioğlu A (2007) Antioxidant activity of protein extracts from heat-treated or thermally processed chickpeas and white beans. Food Chem 103:301–312

    Article  CAS  Google Scholar 

  25. Huang W, Deng Q, Xie B, Shi J, Huang FH, Tian B, Huang Q, Xue S (2010) Purification and characterization of an antioxidant protein from Ginkgo biloba seeds. Food Res Int 43:86–94

    Article  CAS  Google Scholar 

  26. Ningappa MB, Srinivas L (2008) Purification and characterization of ∼35 kDa antioxidant protein from curry leaves (Murraya koenigii L.). Toxicol In Vitro 22:699–709

    Article  CAS  Google Scholar 

  27. Sarkar MK, Kinter M, Mazumder B, Sil PC (2009) Purification and characterization of a novel antioxidant protein molecule from Phyllanthus niruri. Food Chem 114:1405–1412

    Article  CAS  Google Scholar 

  28. Smitha S, Dhananjaya BL, Dinesha R, Srinivas L (2009) Purification and characterization of a ∼34 kDa antioxidant protein (β-turmerin) from turmeric (Curcuma longa) waste grits. Biochim 91:1156–1162

    Article  CAS  Google Scholar 

  29. Byun HG, Lee JK, Park HG, Jeon JK, Kim SK (2009) Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis. Process Biochem 44:842–846

    Article  CAS  Google Scholar 

  30. Chen N, Yang H, Sun Y, Niu J, Liu S (2012) Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Peptides 38:344–349

    Article  CAS  Google Scholar 

  31. Kim SY, Je JY, Kim SK (2007) Purification and characterization of antioxidant peptide from hoki (Johnius belengerii) frame protein by gastrointestinal digestion. J Nutr Biochem 18:31–38

    Article  CAS  Google Scholar 

  32. Liu Q, Kong B, Xiong YL, Xia X (2010) Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem 118:403–410

    Article  CAS  Google Scholar 

  33. Tanzadehpanah H, Asoodeh A, Chamani J (2012) An antioxidant peptide derived from Ostrich (Struthio camelus) egg white protein hydrolysates. Food Res Int 49:105–111

    Article  CAS  Google Scholar 

  34. Rajapakse N, Mendis E, Jung WK, Je JY, Kim SK (2005) Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res Int 38:175–182

    Article  CAS  Google Scholar 

  35. Wang WY, De Mejia EG (2005) A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Compr Rev Sci Food Saf 4:63–78

    Article  CAS  Google Scholar 

  36. Chen HM, Muramoto K, Yamauchi F, Nokihara K (1996) Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. Agric Food Chem 44:2619–2813

    Article  Google Scholar 

  37. Suetsuna K, Ukeda H, Ochi H (2000) Isolation and characterization of free radical scavenging activities peptides derived from casein. J Nutr Biochem 11:128–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research University Project of Thailand, Office of the Higher Education Commission, through the Food and Functional Food Research Cluster of Khon Kaen University and Thailand Research Fund (RMU5380045). Finally, we wish to acknowledge the support of the Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Thailand and to thank Sriracha Moda co., Ltd., Chon Buri, Thailand for supporting the project with crocodile blood samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sompong Thammasirirak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theansungnoen, T., Yaraksa, N., Daduang, S. et al. Purification and Characterization of Antioxidant Peptides from Leukocyte Extract of Crocodylus siamensis . Protein J 33, 24–31 (2014). https://doi.org/10.1007/s10930-013-9536-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9536-8

Keywords

Navigation