Skip to main content
Log in

Chemical Constituents and Anti-inflammatory Properties of the Marine Sponge Haliclona cratera from Konkan, India

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Fractionated compounds and methanol extract of the sponge Haliclona cratera (Schmidt, 1862) were investigated for their antioxidant and anti-inflammatory activities. The extract was also analyzed for its cytotoxicity in RAW macrophages by MTT assay. Enzyme-linked immunosorbent assay was performed to check the inflammatory mediators’ levels (TNF-α, COX-2, IL-1β, PGE2, IL-6). High-performance liquid chromatography–mass spectrometry was used for characterization of fractionated compounds. The extracts showed good bovine serum albumin denaturation inhibition and poor antioxidant activity. It was also observed that the sponge extract did not show good cell viability which indicated its cytotoxic nature. Hc_EA_2, Hc_CHCl3_7, Hc_EA_5, and Hc_CHCl3_6 showed best IL-1β and IL-6 inhibition in the range of 14.10–61.91%. Hc_EA_2, Hc_EA_5, Hc_CHCl3_7 and Hc_CHCl3_6 inhibited TNF-α levels at 74.78, 80.45, 74.16 and 81.29%, respectively. Fractionated compounds reduced the levels of IL-1β, IL-6, PGE2, TNF-α and NO considerably in rats subjected to carrageenan-induced inflammation. Three compounds were characterized as per MS data, namely Sphingosine with isopropyl terminus, 24-methyl-5~-cholesta-7,9(11),24(28) ~-trien-38-o1 and 24-vinyl-cholest-9-ene-3β, 24-diol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Al-Massarani, S.M., El-Gamal, A.A., Al-Said, M.S., et al., Studies on the Red Sea sponge Haliclona sp. for its chemical and cytotoxic properties, Pharmacogn. Mag., 2016, vol. 12, no. 46, pp. 114–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aneiros, A. and Garateix, A., Bioactive peptides from marine sources: pharmacological properties and isolation procedures, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2004, vol. 803, no. 1, pp. 41–53.

    Article  CAS  Google Scholar 

  3. Anjum, K., Abbas, S.Q., Shah, S.A.A. et al., Marine sponges as a drug treasure, Biomol. Ther., 2016, vol. 24, no. 4, pp. 347–362.

    Article  CAS  Google Scholar 

  4. Asagabaldan, M.A., Ayuningrum, D., Kristiana, R. et al., Identification and antibacterial activity of bacteria isolated from marine sponge Haliclona (Reniera) sp. against multidrug resistant human pathogen, IOP Conf. Ser.: Earth Environ. Sci., 2017, vol. 55, art. ID 012019.

  5. Athira Krishnan, K.A., and Keerthi, T.F., Analyses of methanol extracts of two marine sponges, Spongia officinalis var. ceylonensis and Sigmadocia carnosa from southwest coast of India for their bioactivities, Int. J. Curr. Microbiol. Appl. Sci., 2016, vol. 5, no. 2, pp. 722–734.

    Article  CAS  Google Scholar 

  6. Baker, B.J., Scheuer, P.J., and Shoolery, J.N., Papuamine, an antifungal pentacyclic alkaloid from a marine sponge, Haliclona sp., J. Am. Chem. Soc., 1988, vol. 110, no. 3, pp. 965–966.

    Article  CAS  Google Scholar 

  7. Cimino, G., Mattia, C.A., Mazzarella, L. et al., Unprecedented alkaloid skeleton from the Mediterranean sponge Reniera sarai: X-ray structure of an acetate derivative of sarain-a, Tetrahedron, 1989, vol. 45, no. 12, pp. 3863–3872.

    Article  CAS  Google Scholar 

  8. Clark, R.J., Garson, M.J., and Hooper, J.N.A., Antifungal alkyl amino alcohols from the tropical marine sponge Haliclona n. sp, J. Nat. Prod., 2001, vol. 64, no. 12, pp. 1568–1571.

    Article  CAS  PubMed  Google Scholar 

  9. De Bary, A., Die Erscheinung der Symbiose, Strassburg: Verlag von Karl J. Trübner, 1879.

    Book  Google Scholar 

  10. Ebada, S.S., Edrada, R.A., Lin, W. et al., Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates, Nat. Protoc., 2008, vol. 3, pp. 1820–31.

    Article  CAS  PubMed  Google Scholar 

  11. Erickson, K.L., Beutler, J.A., Cardellina, J.H., and Boyd, M.R., Salicylihalamides A and B, novel cytotoxic macrolides from the marine sponge, J. Org. Chem., 1997, vol. 62, no. 23, pp. 8188–8192.

    Article  CAS  PubMed  Google Scholar 

  12. Fahy, E., Molinski, T.F., Harper, M.K. et al., Haliclonadiamine, an antimicrobial alkaloid from the sponge Haliclona sp., Tetrahedron Lett., 1988, vol. 29, no. 28, pp. 3427–3428.

    Article  Google Scholar 

  13. Gözcelioğlu, B. and Konuklugil, B., Qualitative detection of some secondary metabolites from three Turkish marine sponges, FABAD J. Pharm. Sci., 2012, vol. 37, pp. 73–78.

    Google Scholar 

  14. Gunathilake, V., Bertolino, M., Bavestrello, G., et al., Immunomodulatory activity of the marine sponge, Haliclona (Soestella) sp. (Haplosclerida: Chalinidae), from Sri Lanka in Wistar albino rats: Immunosuppression and Th1-skewed cytokine response, J. Immunol. Res., 2020, vol. 2020, art. ID 7281295.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hara, S., Makino, K., and Hamada, Y., Total synthesis of halipeptin A, a potent anti-inflammatory cyclodepsipeptide from a marine sponge, Tetrahedron Lett., 2006, vol. 47, no. 7, pp. 1081–1085.

    Article  CAS  Google Scholar 

  16. Hort, M.A., Da Silva Júnior, F., Garcia, E.M., et al., Antinociceptive and anti-inflammatory activities of marine sponges Aplysina caissara, Haliclona sp. and Dragmacidon reticulatum, Braz. Arch. Biol. Technol., 2018, vol. 61, art. ID e18180104.

    Article  CAS  Google Scholar 

  17. Keyzers, R.A., and Davies-Coleman, M.T., Anti-inflammatory metabolites from marine sponges, Chem. Soc. Rev., 2005, vol. 34, no. 4, pp. 355–365.

    Article  CAS  PubMed  Google Scholar 

  18. Kim, S.K., and Dewapriya, P., Bioactive compounds from marine sponges and their symbiotic microbes: a potential source of nutraceuticals, Adv. Food Nutr. Res., 2012, vol. 65, pp. 137–151.

    Article  PubMed  Google Scholar 

  19. Koh, S-I., and Shin, H-S., The Anti-rotaviral and anti-inflammatory effects of Hyrtios and Haliclona species, J. Microbiol. Biotechnol., 2016, vol. 26, no. 11, pp. 2006–2011.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar, M.S., Pandita, N.S., and Pal, A.K., LC-MS/MS as a tool for identification of bioactive compounds in the marine sponge Spongosorites halichondriodes (Dendy 1905), Toxicon, 2012, vol. 60, no. 6, pp. 1135–1147.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, T., Li, J., Liu, Y., et al., Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-kB pathway in RAW264.7 Cells, Inflammation, 2012, vol. 35, pp. 1676–1684.

    Article  CAS  PubMed  Google Scholar 

  22. Luter, H.M., Widder, S., Botté, E.S. et al., Biogeographic variation in the microbiome of the ecologically important sponge, Carteriospongia foliascens, PeerJ, 2015, vol. 3, art. ID e1435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Mahajna, S., Azab, M., Zaid, H. et al., In vitro evaluations of cytotoxicity and anti-inflammatory effects of Peganum harmala seed extracts in THP-1 derived macrophages, Eur. J. Med. Plants, 2015, vol. 5, pp. 165–175.

    Article  Google Scholar 

  24. Mahdian, D., Iranshahy, M., Shakeri, A., et al., Cytotoxicity evaluation of extracts and fractions of five marine sponges from the Persian Gulf and HPLC fingerprint analysis of cytotoxic extracts, Asian Pac. J. Trop. Biomed., 2015, vol. 5, no. 11, pp. 896–901.

    Article  Google Scholar 

  25. Mayer, A.M.S., Hall, M.L., Lynch, S.M. et al., Differential modulation of microglia superoxide anion and thromboxane B2 generation by the marine manzamines, BMC Pharmacol., 2005, vol. 5, art. ID 6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mensor, L.L., Menezes, F.S., Leitão, G.G. et al., Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method, Phytother. Res., 2001, vol. 15, no. 2, pp. 127–130.

    Article  CAS  PubMed  Google Scholar 

  27. Mizushima, Y., and Kobayashi, M., Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins, J. Pharm. Pharmacol., 1968, vol. 20, no. 3, pp. 169–173.

    Article  CAS  PubMed  Google Scholar 

  28. Mohamed, N.M., Colman, A.S., Tal, Y., et al., Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges, Environ. Microbiol., 2008, vol. 10, no. 11, pp. 2910–2921.

    Article  CAS  PubMed  Google Scholar 

  29. Moles, J., Torrent, A., José Alcaraz, M., et al., Anti-inflammatory activity in the selected Antarctic benthic organisms, Front. Mar. Sci., 2014, vol. 1, art. ID 24.

    Article  Google Scholar 

  30. Nakagawa, M., Endo, M., Tanaka, N., et al., Structures of xestospongin A, B, C and D, novel vasodilative compounds from marine sponge, Xestospongia exigua, Tetrahedron Lett., 1984, vol. 25, no. 30, pp. 3227–3230.

    Article  CAS  Google Scholar 

  31. Odebiyi, A., and Sofowora, A.E., Phytochemical screening of Nigerian medicinal plants. Part III, Lloydia, 1990, vol. 41, no. 3, pp. 234–246.

    Google Scholar 

  32. Olson, J.B., and McCarthy, P.J., Associated bacterial communities of two deep-water sponges, Aquat. Microb. Ecol., 2005, vol. 39, pp. 47–55.

    Article  Google Scholar 

  33. Pacienza, N., Lee, R.H., Bae, E.H., et al., In vitro macrophages assay predicts the in vivo anti-inflammatory potential of exosomes from human mesenchymal stromal cells, Mol. Ther.–Methods Clin. Dev., 2018, vol. 13, pp. 67–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Pajic, I., Kljajic, Z., Dogovic, N., et al., A novel lectin from the sponge Haliclona cratera: isolation, characterization and biological activity, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2002, vol. 132, no. 2, pp. 213–221.

    Google Scholar 

  35. Pallela, R., Koigoora, S., Gunda, V.G., et al., Comparative morphometry, biochemical and elemental composition of three marine sponges (Petrosiidae) from Gulf of Mannar, India, Chem. Speciation Bioavailability, 2011, vol. 23, no. 1, pp. 16–23.

    Article  CAS  Google Scholar 

  36. Park, E.J., Cheenpracha, S., Chang, L.C., et al., Suppression of cyclooxygenase-2 and inducible nitric oxide synthase expression by epimuqubilin A via IKK/IκB/NF-κB pathways in lipopolysaccharide-stimulated RAW264.7 cells, Phytochem. Lett., 2011, vol. 4, no. 4, pp. 426– 431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Posadas, I., Terencio, M.C., Giannini, C. et al., Dysidotronic acid, a new sesquiterpenoid, inhibits cytokine production and the expression of nitric oxide synthase, Eur. J. Pharmacol., 2001, vol. 415, nos. 2–3, pp. 285–292.

    Article  CAS  PubMed  Google Scholar 

  38. Randazzo, A., Bifulco, G., Giannini, C., et al., Halipeptins A and B:  Two novel potent anti-inflammatory cyclic depsipeptides from the Vanuatu marine sponge Haliclona species, J. Am. Chem. Soc., 2001, vol. 123, no. 44, pp. 10870–10876.

    Article  CAS  PubMed  Google Scholar 

  39. Rashid, M.A., Gustafson, K.R., Boswell, J.L., et al., Haligramides A and B, two new cytotoxic hexapeptides from the marine sponge Haliclona nigra, J. Nat. Prod., 2000, vol. 63, no. 7, pp. 956–959.

    Article  CAS  PubMed  Google Scholar 

  40. Sakai, R., Kohmoto, S., Higa, T. et al., Two novel alkaloids from the sponge Haliclona sp., Tetrahadron Lett., 1987, vol. 28, pp. 5493–5496.

    Article  CAS  Google Scholar 

  41. Sathe, B.S., Jagtap, V.A., Deshmukh, S.D., et al., Screening of in vitro anti-inflammatory activity of some newly synthesized fluorinated benzothiazolo imidazole compounds, Int. J. Pharm. Pharm. Sci., 2011, vol. 3, pp. 220–222.

    CAS  Google Scholar 

  42. Schmitz, J., Hollenbeak, K.H., and Campbell, D.C., Marine natural products: halitoxin, toxic complex of several marine sponges of the genus Haliclona, J. Org. Chem., 1978, vol. 43, no. 20, pp. 3916–3922.

    Article  CAS  Google Scholar 

  43. Sipkema, D., Holmes, B., Nichols, S.A., and Blanch, H.W., Biological characterisation of Haliclona (? gellius) sp.: sponge and associated microorganisms, Microb. Ecol., 2009, vol. 58, no. 4, pp. 903–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vogel, A.I., A Textbook of Practical Organic Chemistry including Quantitative Organic Analysis, London: Longman Group, 1958.

    Google Scholar 

  45. Webster, N.S., Negri, A.P., Munro, M.M.H.G., et al., Diverse microbial communities inhabit Antarctic sponges, Environ. Microbiol., 2004, vol. 6, no. 3, pp. 288–300.

    Article  PubMed  Google Scholar 

  46. Yu, S., Deng, Z., Proksch, P., et al., Oculatol, oculatolide, and A-nor sterols from the sponge Haliclona oculata, J. Nat. Prod., 2006, vol. 69, no. 9, pp. 1330–1334.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

I express my gratitude to Mr. Shailendra Rane, Dr. Swapnaja Mohite, and Ms. Sayli Chaudhary for helping with analysis and sponge identification and to SVKM’s NMIMS for all the support.

Funding

This work was financially supported by the Department of Biotechnology, Government of India (Project no. BT/PR12182/AAQ/3/696/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maushmi S. Kumar.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M.S. Chemical Constituents and Anti-inflammatory Properties of the Marine Sponge Haliclona cratera from Konkan, India. Russ J Mar Biol 48, 285–296 (2022). https://doi.org/10.1134/S106307402204006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106307402204006X

Keywords:

Navigation