Skip to main content

Advertisement

Log in

In Vitro Study on Structural Alteration of Myoglobin by Methylglyoxal

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Methylglyoxal (MG), a reactive α-oxoaldehyde, reacts with proteins to form irreversible advanced glycation end products (AGEs) following Maillard-like reaction. MG-induced AGE (MAGE) formation may be significant, particularly in diabetic condition with increased level of MG. Although myoglobin (Mb) is known to react with sugars to form AGEs, its interaction with MG is not known. Here we have studied interaction of Mb with MG. After in vitro reaction between Mb and MG at 25 °C for 7 days, the unchanged Mb and modified Mb (MG-Mb) were separated by ion exchange chromatography. Compared to Mb, MG-Mb exhibited higher electrophoretic mobility in native polyacrylamide gel electrophoresis, increased absorbance around 280 nm and more α-helical content, indicating structural changes of the modified protein. As shown by MALDI-mass spectrometry, MG converted Lys-16 and Lys-133 to carboxyethyllysine in MG-Mb. MAGE thus formed in MG-Mb may be associated with its enhanced mobility in native gel due to neutralization of positive charges and the observed structural changes in comparison with Mb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AGEs:

Advanced glycation end products

CD:

Circular dichroic

CEL:

Carboxyethyllysine

CID:

Collision-induced dissociation

MAGE:

Methylglyoxal-induced advanced glycation end products

MALDI-TOF:

Matrix-assisted laser-desorption ionization-time of flight

Mb:

Myoglobin

MG:

Methylglyoxal

MG-H1:

Hydroimidazolone

MG-Mb:

Methylglyoxal-modified myoglobin

MS:

Mass spectrometry

PAGE:

Polyacrylamide gel electrophoresis

PB:

Potassium phosphate buffer

References

  1. Ahmed N, Dobler D, Dean M, Thornalley PJ (2005) J Biol Chem 280:5724–5732

    Article  CAS  Google Scholar 

  2. Bhattacherjee A, Chakraborti AS (2011) Int J Biol Macromol 48:202–209

    Article  CAS  Google Scholar 

  3. Bokiej M, Livermore AT, Harris AW, Onishi AC, Sandwick RK (2011) Biochem Biophys Res Com 407:191–196

    Article  CAS  Google Scholar 

  4. Bose T, Bhattacherjee A, Banerjee S, Chakraborti AS (2013) Arch Biochem Biophys 529:99–104

    Article  CAS  Google Scholar 

  5. Bose T, Chakraborti AS (2008) Biochim Biophys Acta 1780:800–808

    Article  CAS  Google Scholar 

  6. Chaplen FWR, Fahl WE, Cameron DC (1996) Cytotechnology 22:33–42

    Article  CAS  Google Scholar 

  7. Chen Y, Ahmed N, Thornalley PJ (2005) Ann NY Acad Sci 1043:905

    Article  Google Scholar 

  8. Chen YH, Yan JT, Martinez HM (1972) Biochemistry 11:4120–4131

    Article  CAS  Google Scholar 

  9. Cooper RA (1975) Methods Enzymol 41:535–541

    Article  Google Scholar 

  10. Gallet X, Charloteaux B, Thomas A, Brasseur R (2000) J Mol Biol 302:917–926

    Article  CAS  Google Scholar 

  11. Gao Y, Wang Y (2006) Biochemistry 45:15654–15660

    Article  CAS  Google Scholar 

  12. Giardino I, Edelstein D, Brownlee M (1994) J Clin Invest 94:110–117

    Article  CAS  Google Scholar 

  13. Gomes RA, Miranda HV, Silva MS, Graca G, Coelho AV, Ferreira AE, Cordeiro C, Freire AP (2006) FEBS J 273:5273–5287

    Article  CAS  Google Scholar 

  14. Gomes RA, Oliveira LMA, Silva M, Ascenso C, Quintas A, Costa G, Coelho AV, Silva MS, Ferreira AEN, Freire AP, Cordeiro C (2008) Biochem J 416:317–326

    Article  CAS  Google Scholar 

  15. Jia X, Olson DJH, Ross ARS, Wu L (2006) Faseb J 20:1555–1557

    Article  CAS  Google Scholar 

  16. Kalapos MP (1999) Toxicol Lett 110:145–175

    Article  CAS  Google Scholar 

  17. Kang JH (2006) J Biochem Mol Biol 39:335–338

    Article  CAS  Google Scholar 

  18. Kumar MS, Reddy PY, Kumar PA, Surolia T, Reddy GB (2004) Biochem J 379:273–282

    Article  CAS  Google Scholar 

  19. Lo TWC, Westwood ME, McLellan AC, Selwood T, Thornalley PJ (1994) J Biol Chem 269:32299–32305

    CAS  Google Scholar 

  20. Lu J, Randell E, Han Y, Adeli K, Krhan J, Meng QH (2011) Clin Biochem 44:307–311

    Article  CAS  Google Scholar 

  21. Nagaraj RH, Shipanova IN, Faust FM (1996) J Biol Chem 271:19338–19345

    Article  CAS  Google Scholar 

  22. Nakano S, Mugikura M, Endoh M, Ogami Y, Isuki MJ (1996) J Gastroenterol 31:623–626

    Article  CAS  Google Scholar 

  23. Nemet I, Varga-Defterdarovic L, Turk Z (2004) Clin Biochem 37:875–881

    Article  CAS  Google Scholar 

  24. Odani H, Shinzato T, Usami J, Matsumoto Y, Frye EB, Baynes JW, Maeda K (1998) FEBS Lett 427:381–385

    Article  CAS  Google Scholar 

  25. Oliviera LMA, Lages A, Gomes RA, Neves H, Familia C, Coelho AV, Quintas A (2011) BMC Biochem 12:41

    Article  Google Scholar 

  26. Oya-Ito T, Naitu Y, Takagi T, Handa O, Matsui H, Yamada M, Shima K, Yoshikawa T (2011) Biochim Biophys Acta 1812:769–781

    Article  CAS  Google Scholar 

  27. Puttaiah S, Biswas A, Staniszewska M, Nagaraj RH (2007) Exp Eye Res 84:914–921

    Article  CAS  Google Scholar 

  28. Ramasamy R, Yan SF, Schmidt AM (2006) Cell 124:258–260

    Article  CAS  Google Scholar 

  29. Roy A, Sen S, Chakraborti AS (2004) Free Radic Res 38:139–146

    Article  CAS  Google Scholar 

  30. Roy A, Sil R, Chakraborti AS (2010) Mol Cell Biochem 338:105–114

    Article  CAS  Google Scholar 

  31. Schalkwijk CG, van Bezu J, van der Schors RC, Uchida K, Stehouwer CD, van Hinsbergh VW (2006) FEBS Lett 580:1565–1570

    Article  CAS  Google Scholar 

  32. Sen S, Kar M, Roy A, Chakraborti AS (2005) Biophys Chem 113:289–298

    Article  CAS  Google Scholar 

  33. Tanabashi S, Okuno F, Terakura T, Tsuji T, Wakahara T, Yamada S (1982) Nippon Naika Gakki Zasshi 71:802–809

    Article  CAS  Google Scholar 

  34. Thornalley PJ (1993) Mol Aspects Med 14:287–371

    Article  CAS  Google Scholar 

  35. Wittenberg JB, Wittenberg BA (1981) Methods Enzymol 76:29–42

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S.B received a research fellowship [No. 09/028(0802)/2010-EMR-1] from the Council of Scientific and Industrial Research, New Delhi. The study was supported by financial assistances from the Department of Science and Technology, New Delhi [Grant No. DST/SR/FST/LSI-286/2006(c)] and the University Grants Commission, New Delhi [Grant No.UGC (DSA) F.4-1/2009 (SAP-II)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Sankar Chakraborti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Chakraborti, A.S. In Vitro Study on Structural Alteration of Myoglobin by Methylglyoxal. Protein J 32, 216–222 (2013). https://doi.org/10.1007/s10930-013-9480-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9480-7

Keywords

Navigation