Skip to main content
Log in

Effect of Homocysteine Thiolactone on Structure and Aggregation Propensity of Bovine Pancreatic Insulin

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Homocysteine thiolactone (HCTL) is a cyclic thioester of homocysteine, showing high reactivity toward lysine residues of proteins. In the present study the structural properties and aggregation propensity of bovine pancreatic insulin were studied in the presences of increasing concentration of HCTL (0–500 μM), using different spectroscopic techniques. As shown in this study, HCTL induces gross structural alterations and subsequently aggregation of insulin in a dose dependent manner. Also induction of insulin aggregation by HCTL occurs in a sequential process, where native protein with alpha-helical abundant structure gradually transforms into partially folded conformations with the significant amount of beta-sheet. Since C-terminal B-chain of insulin plays a critical role in stability of this protein, the structural alteration/aggregation induced by HCTL can be consequence of homocysteinylation of the only Lysine residue (Lys29) on its B-chain. This study may have important implications regarding the effect of HCTL on structure of insulin particularly in the pathological states linked to hyperhomocysteinemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANS:

1-anilino-8-naphthalene sulfonate

BLH:

Bleomycin hydrolase

CBS:

Cystathionine β-synthase

CD:

Circular dichroism

CDNN:

Context dependent neural networks

DLS:

Dynamic light scattering

HCTL:

Homocysteine thiolactone

Hcy:

Homocysteine

Lys:

Lysine

MetRS:

Methionyl-tRNA synthetase

MS:

Met synthase

MTHFR:

Methylene tetrahydrofolate reductase

PON1:

Paraoxonase 1

RH :

Hydrodynamic radius

UF:

Ultra filtration

References

  1. Ahmad A, Uversky VN, Hong D, Fink AL (2005) J Biol Chem 280:42669–42675

    Article  CAS  Google Scholar 

  2. Baillie SE, Clegg W, García-Álvarez P, Hevia E, Kennedy AR, Klett J, Russo L (2011) Chem Commun (Camb) 47:388–390

    Article  CAS  Google Scholar 

  3. Bełtowski J (2005) Postepy Hig Med Dosw 59:392–404

    Google Scholar 

  4. Böhm G, Muhr R, Jaenicke R (1992) Protein Eng 5:191–195

    Article  Google Scholar 

  5. Bostom AG, Lathrop L (1997) Kidney Int 52:10–20

    Article  CAS  Google Scholar 

  6. Bouchard M, Zurdo J, Nettleton EJ, Dobson CM, Robinson CV (2000) Protein Sci 9:1960–1967

    Article  CAS  Google Scholar 

  7. Brange J, Langkjoer L (1993) Pharm Biotechnol 5:315–350

    CAS  Google Scholar 

  8. Brosnan JT, Jacobs RL, Stead LM, Brosnan ME (2004) Acta Biochim Pol 51:405–413

    CAS  Google Scholar 

  9. Casas-Finet JR, Karpel RL, Maki AH, Kumar A, Wilson SH (1991) J Mol Biol 221:693–709

    Article  CAS  Google Scholar 

  10. Chwatko G, Boers GH, Strauss KA, Shih DM, Jakubowski H (2007) FASEB J 21:1707–1713

    Article  CAS  Google Scholar 

  11. D’Angelo A, Selhub J (1997) Blood 90:1–11

    Google Scholar 

  12. Demeule B, Lawrence MJ, Drake AF, Gurny R, Arvinte T (2007) Biochim Biophys Acta 1774:146–153

    CAS  Google Scholar 

  13. Dennis VW, Robinson K (1996) Kidney Int Suppl 57:11–17

    Google Scholar 

  14. Dische FE, Wernstedt C, Westermark GT, Westermark P, Pepys MB (1988) Diabetologia 31:158–161

    Article  CAS  Google Scholar 

  15. Divsalar A, Saboury AA, Moosavi-Movahedi AA (2006) Protein J 25:157–165

    Article  CAS  Google Scholar 

  16. Domagała TB, Łacinski M, Trzeciak WH, Mackness B, Mackness MI, Jakubowski H (2006) Cell Mol Biol (Noisy-le-grand) 52:4–10

    Google Scholar 

  17. Green R, Jacobsen DW (1995) In: Bailey LB (ed) Folate in health and disease. Marcel Dekker, New York, pp 75–122

    Google Scholar 

  18. Hawe A, Sutter M, Jiskoot W (2008) Pharm Res 25:1487–1499

    Article  CAS  Google Scholar 

  19. Home P, Bartley P, Russell-Jones D, Hanaire-Broutin H, Heeg JE, Abrams P, Landin-Olsson M, Hylleberg B, Lang H, Draeger E (2004) Diabetes Care 27:1081–1087

    Article  CAS  Google Scholar 

  20. Hong DP, Ahmad A, Fink AL (2006) Biochemistry 45:9342–9353

    Article  CAS  Google Scholar 

  21. Jacobsen DW (1998) Clin Chem 44:1833–1843

    CAS  Google Scholar 

  22. Jakubowski H (1991) EMBO J 10:593–598

    CAS  Google Scholar 

  23. Jakubowski H (1997) J Biol Chem 272:1935–1942

    CAS  Google Scholar 

  24. Jakubowski H (1999) FASEB J 13:2277–2283

    CAS  Google Scholar 

  25. Jakubowski H (2000) J Biol Chem 275:3957–3962

    Article  CAS  Google Scholar 

  26. Jakubowski H (2001) Biomed Pharmacother 55:443–447

    Article  CAS  Google Scholar 

  27. Jakubowski H (2002) Anal Biochem 308:112–119

    Article  CAS  Google Scholar 

  28. Jakubowski H (2002) J Biol Chem 277:30425–30428

    Article  CAS  Google Scholar 

  29. Jakubowski H (2003) Clin Chem Lab Med 41:1462–1466

    Article  CAS  Google Scholar 

  30. Jakubowski H (2004) Mol Cell Life Sci 61:470–487

    Article  CAS  Google Scholar 

  31. Jakubowski H (2006) J Nutr 136:1741–1749

    Google Scholar 

  32. Jakubowski H (2007) Clin Chem Lab Med 45:1704–1716

    Article  CAS  Google Scholar 

  33. Jakubowski H (2008) J Physiol Pharmacol 59:155–167

    Google Scholar 

  34. Jakubowski H (2010) Adv Exp Med Biol 660:113–127

    Article  CAS  Google Scholar 

  35. Jakubowski H, Ambrosius WT, Pratt JH (2001) FEBS Lett 491:35–39

    Article  CAS  Google Scholar 

  36. Jiménez JL, Nettleton EJ, Bouchard M, Robinson CV, Dobson CM, Saibil HR (2002) Proc Natl Acad Sci 99:9196–9201

    Article  Google Scholar 

  37. Kim HY, Ghosh G, Schulman LH, Brunie S, Jakubowski H (1993) Proc Natl Acad Sci 90:11553–11557

    Article  CAS  Google Scholar 

  38. Knekt P, Reunanen A, Alfthan G, Heliövaara M, Rissanen H, Marniemi J, Aromaa A (2001) Arch Intern Med 161:1589–1594

    Article  CAS  Google Scholar 

  39. Krajcovicová-Kudlácková M, Blazícek P, Ginter E, Valachicová M (2004) Cent Eur J Public Health 12:217–219

    Google Scholar 

  40. Lasagna-Reeves CA, Clos AL, Midoro-Hiriuti T, Goldblum RM, Jackson GR, Kayed R (2010) Endocrinology 151:4717–4724

    Article  CAS  Google Scholar 

  41. Mansoor MA, Ueland PM, Aarsland A, Svardal AM (1993) Metabolism 42:1481–1485

    Article  CAS  Google Scholar 

  42. Mayer EL, Jacobsen DW (1996) J Am Coll Cardiol 27:517–527

    Article  CAS  Google Scholar 

  43. Menendez CJ, Herskovits TT (1969) Biochemistry 8:5052–5059

    Article  CAS  Google Scholar 

  44. Mercié P, Garnier O, Lascoste L, Renard M, Closse C, Durrieu F, Marit G, Boisseau RM, Belloc F (2000) Apoptosis 5:403–411

    Article  Google Scholar 

  45. Mudd SH, Levy HL, Krauss JP (2001) In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Vogelstein B (eds) The metabolic and molecular bases of inherited disease. C MC Graw Hill, New York, pp 2007–2056

    Google Scholar 

  46. Mudd SH, Levy HL, Skovby F (1995) In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease. McGraw Hill, New York, pp 1279–1327

    Google Scholar 

  47. Najib S, Sánchez-Margalet V (2001) J Mol Endocrinol 27:85–91

    Article  CAS  Google Scholar 

  48. Ndrepepa G, Kastrati A, Braun S, Koch W, Kölling K, Mehilli J, Schömig A (2008) Metab Cardiovasc Dis 18:66–73

    Article  CAS  Google Scholar 

  49. Nielsen L, Frokjaer S, Brange J, Uversky VN, Fink AL (2001) Biochemistry 40:8397–8409

    Article  CAS  Google Scholar 

  50. Pancharuniti N, Lewis CA, Sauberlich EH, Perkins LL, Go PCG, Alvarez JO, Macaluso M, Acton RT, Copeland RB, Cousins AL (1994) Am J Clin Nutr 59:940–948

    CAS  Google Scholar 

  51. Panza G, Dumpitak C, Birkmann E (2010) Rejuvenation Res 13:220–223

    Article  CAS  Google Scholar 

  52. Perdziak M, Zimny J, Jakubowski H, Guranowski A (2005) Acta Biochim Polon 50 (Abstract P11.49)

  53. Pocker Y, Biswas SB (1980) Biochemistry 19:5043–5049

    Article  CAS  Google Scholar 

  54. Pocker Y, Biswas SB (1981) Biochemistry 20:4354–4361

    Article  CAS  Google Scholar 

  55. Rimm EB, Willett WC, Hu FB, Sampson L, Colditz GA, Manson JE, Hennekens C, Stampfer MJ (1998) JAMA 279:359–364

    Article  CAS  Google Scholar 

  56. Roybal CN, Yang S, Sun CW, Hurtado D, Vander Jagt DL, Townes TM, Abcouwer F (2004) J Biol Chem 279:14844–14852

    Article  CAS  Google Scholar 

  57. Sauls DL, Wolberg AS, Hoffman M (2003) J Thromb Haemost 1:300–306

    Article  CAS  Google Scholar 

  58. Selkoe DJ (2003) Nature 426:900–904

    Article  CAS  Google Scholar 

  59. Sen U, Tyagi SC (2010) PPAR Res 2010:1–12

    Article  Google Scholar 

  60. Stefani M, Dobson CM (2003) J Mol Med 81:678–699

    Article  CAS  Google Scholar 

  61. Ueland PM, Refsum H, Brattström L (1992) In: Francis RB (ed) Atherosclerotic cardiovascular disease, hemostasis and endothelial function. Marcel Dekker, New York, pp 183–236

    Google Scholar 

  62. Wallace BA (2009) Q Rev Biophys 42:317–370

    Article  CAS  Google Scholar 

  63. Wang R, Zenobi R (2010) J Am Soc Mass Spectrom 21:378–385

    Article  CAS  Google Scholar 

  64. Wang SS, Liu KN, Han TC (2010) Biochim Biophys Acta 1802:519–530

    CAS  Google Scholar 

  65. Wright CB, Lee HS, Paik MC, Stabler SP, Allen RH, Sacco RL (2004) Neurology 63:254–260

    CAS  Google Scholar 

  66. Yang S, Levine H, Onuchic JN (2005) J Mol Biol 352:202–211

    Article  CAS  Google Scholar 

  67. Yong Z, Yingjie D, Ming L, Craig DQ, Zhengqiang L (2009) J Colloid Interface Sci 337:322–331

    Article  Google Scholar 

  68. Yousefi R, Ardestani SK, Saboury AA, Kariminia A, Zeinali M, Amani M (2005) J Biochem Mol Biol 38:407–413

    Article  CAS  Google Scholar 

  69. Zimny J, Sikora M, Guranowski A, Jakubowski H (2006) J Biol Chem 2481:22485–22492

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the research council of Shiraz University for the financial support (Grant number: 88-GR-SCST-112). Also the support of Iran National Science Foundation (INSF)/Grant number: 88001578 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Yousefi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jalili, S., Yousefi, R., Papari, MM. et al. Effect of Homocysteine Thiolactone on Structure and Aggregation Propensity of Bovine Pancreatic Insulin. Protein J 30, 299–307 (2011). https://doi.org/10.1007/s10930-011-9333-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-011-9333-1

Keywords

Navigation