Skip to main content
Log in

Chemical Modification of the Amino Groups of Human Insulin: Investigating Structural Properties and Amorphous Aggregation of Acetylated Species

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The efficacy of human recombinant insulin can be affected by its aggregation. Effects of acetylation were observed on insulin structure, stability, and aggregation at 37 and 50 °C and pH of 5.0 and 7.4 with the use of spectroscopy, circular dichroism (CD), dynamic light scattering (DLS), and atomic force microscopy (AFM). Raman and FTIR results were indicative of structural changes in AC-INS, and CD analyses showed a slight increase in β-sheet content in AC-INS. Melting temperature (Tm) measurements indicated an overall more stable structure and spectroscopic assessment showed a more compact one. Formation of amorphous aggregates was followed over time and kinetics parameters showed a longer nucleation phase (higher t* amount) and lower aggregates amount (lower Alim) for acetylated insulin (AC-INS) compared to native (N-INS) in all tested conditions. The results of amyloid-specific probes approved the formation of amorphous aggregates. Size particle and microscopic analysis suggested that AC-INS was less prone to form aggregates, which were smaller if formed. In conclusion, this study has demonstrated that controlled acetylation of insulin may lead to its higher stability and lower propensity toward amorphous aggregation and has provided insight into the result of this type of post-translational protein modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

INS:

Insulin

N-INS:

Native Insulin

AC-INS:

Acetylated Insulin

HI-INS:

Heat-Induced-INS

References

  1. Kurganov B, Rafikova E, Dobrov E (2002) Kinetics of thermal aggregation of tobacco mosaic virus coat protein. Biochem Mosc 67:525–533

    CAS  Google Scholar 

  2. Sakalauskas A, Ziaunys M, Smirnovas V (2019) Concentration-dependent polymorphism of insulin amyloid fibrils. PeerJ 7:e8208

    PubMed  PubMed Central  Google Scholar 

  3. Owczarz M, Arosio P (2014) Sulfate anion delays the self-assembly of human insulin by modifying the aggregation pathway. Biophys J 107:197–207

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chaturvedi SK, Siddiqi MK, Alam P, Khan RH (2016) Protein misfolding and aggregation: Mechanism, factors and detection. Process Biochem 51:1183–1192

    CAS  Google Scholar 

  5. Stranks SD, Ecroyd H, Van Sluyter S, Waters EJ, Carver JA, Von Smekal L (2009) Model for amorphous aggregation processes. Phys Rev E 80:051907

    Google Scholar 

  6. Qureshi HY, Li T, MacDonald R, Cho CM, Leclerc N, Paudel HK (2013) Interaction of 14-3-3ζ with microtubule-associated protein tau within Alzheimer’s disease neurofibrillary tangles. Biochemistry 52:6445–6455

    CAS  PubMed  Google Scholar 

  7. Murphy RM (2002) Peptide aggregation in neurodegenerative disease. Annu Rev Biomed Eng 4:155–174

    CAS  PubMed  Google Scholar 

  8. Borgia MB, Nickson AA, Clarke J, Hounslow MJ (2013) A mechanistic model for amorphous protein aggregation of immunoglobulin-like domains. J Am Chem Soc 135:6456–6464

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Adachi M, Noji M, So M, Sasahara K, Kardos J, Naiki H, Goto Y (2018) Aggregation-phase diagrams of β2-microglobulin reveal temperature and salt effects on competitive formation of amyloids versus amorphous aggregates. J Biol Chem 293:14775–14785

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilmarth P, Tanner S, Dasari S, Nagalla S, Riviere M, Bafna V, Pevzner P, David L (2006) Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility? J Proteome Res 5:2554–2566

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Radamaker L, Karimi-Farsijani S, Andreotti G, Baur J, Neumann M, Schreiner S, Berghaus N, Motika R, Haupt C, Walther P (2021) Role of mutations and post-translational modifications in systemic AL amyloidosis studied by cryo-EM. Nat Commun 12:1–11

    Google Scholar 

  12. Shastry BS (2003) Neurodegenerative disorders of protein aggregation. Neurochem Int 43:1–7

    CAS  PubMed  Google Scholar 

  13. Drazic A, Myklebust LM, Ree R, Arnesen T (2016) The world of protein acetylation. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1864:1372–1401

  14. Chinisaz M, Ebrahim-Habibi A, Dehpour A-R, Yaghmaei P, Parivar K, Moosavi-Movahedi AA (2017) Structure and function of anhydride-modified forms of human insulin: In silico, in vitro and in vivo studies. Eur J Pharm Sci 96:342–350

    CAS  PubMed  Google Scholar 

  15. Morshedi D, Ebrahim-Habibi A, Moosavi-Movahedi AA, Nemat-Gorgani M (2010) Chemical modification of lysine residues in lysozyme may dramatically influence its amyloid fibrillation. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1804:714–722

  16. Chaibva M, Jawahery S, Pilkington AW IV, Arndt JR, Sarver O, Valentine S, Matysiak S, Legleiter J (2016) Acetylation within the first 17 residues of huntingtin exon 1 alters aggregation and lipid binding. Biophys J 111:349–362

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yousefi R, Taheri B, Alavi P, Shahsavani MB, Asadi Z, Ghahramani M, Niazi A, Alavianmehr MM, Moosavi-Movahedi AA (2016) Aspirin-mediated acetylation induces structural alteration and aggregation of bovine pancreatic insulin. J Biomol Struct Dyn 34:362–375

    CAS  PubMed  Google Scholar 

  18. Yang X-J, Seto E (2008) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 31:449–461

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Foderà V, Donald A (2010) Tracking the heterogeneous distribution of amyloid spherulites and their population balance with free fibrils. Eur Phys J E 33:273–282

    PubMed  Google Scholar 

  20. Steiner D, Chan S, Welsh J, Kwok S (1985) Structure and evolution of the insulin gene. Annu Rev Genet 19:463–484

    CAS  PubMed  Google Scholar 

  21. Sanger F (1960) Chemistry of insulin. Br Med Bull 16:183–188

    CAS  PubMed  Google Scholar 

  22. Hua Q (2010) Insulin: a small protein with a long journey. Protein Cell 1:537–551

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Swiontek M, Fraczyk J, Wasko J, Chaberska A, Pietrzak L, Kaminski ZJ, Szymanski L, Wiak S, Kolesinska B (2019) Search for new aggregable fragments of human insulin. Molecules 24:1600

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmitt A, Schmitt J, Münch G, Gasic-Milencovic J (2005) Characterization of advanced glycation end products for biochemical studies: side chain modifications and fluorescence characteristics. Anal Biochem 338:201–215

    CAS  PubMed  Google Scholar 

  25. Hjorth CF, Norrman M, Wahlund P-O, Benie AJ, Petersen BO, Jessen CM, Pedersen TÅ, Vestergaard K, Steensgaard DB, Pedersen JS (2016) Structure, aggregation, and activity of a covalent insulin dimer formed during storage of neutral formulation of human insulin. J Pharm Sci 105:1376–1386

    CAS  PubMed  Google Scholar 

  26. Lindsay D, Shall S (1971) The acetylation of insulin. Biochem J 121:737–745

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mauro M, Craparo EF, Podestà A, Bulone D, Carrotta R, Martorana V, Tiana G, San Biagio PL (2007) Kinetics of different processes in human insulin amyloid formation. J Mol Biol 366: 258–274

    Google Scholar 

  28. Purcell JM, Quimby DJ, Cavanaugh JR (1976) New method for the determination of free amino groups in intact pure proteins: relationship to available lysine. J Assoc Off Anal Chem 59:1251–1254

    CAS  PubMed  Google Scholar 

  29. Udenfriend S, Stein S, Boehlen P, Dairman W, Leimgruber W, Weigele M (1972) Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science 178:871–872

    CAS  PubMed  Google Scholar 

  30. Chattopadhyay A (2003) Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. Chem Phys Lipid 122:3–17

    CAS  Google Scholar 

  31. Kurganov B (2002) Kinetics of protein aggregation. Quantitative estimation of the chaperone-like activity in test-systems based on suppression of protein aggregation. Biochem Mosc 67:409–422

    CAS  Google Scholar 

  32. Antosiewicz JM, Shugar D (2016) UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications. Biophys Rev 8:163–177

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Devi C, Kalita P, Choudhury D, Barthakur M (2020) Preparation and characterization of gold nanoparticles conjugated insulin. In: Smart healthcare for disease diagnosis and prevention. Elsevier, Ansterdam, pp 29–32

  34. Huus K, Havelund S, Olsen HB, van de Weert M, Frokjaer S (2005) Thermal dissociation and unfolding of insulin. Biochemistry 44:11171–11177

    CAS  PubMed  Google Scholar 

  35. Rodina NP, Sulatsky MI, Sulatskaya AI, Kuznetsova IM, Uversky VN, Turoverov KK (2017) Photophysical properties of fluorescent probe Thioflavin T in crowded milieu. J Spectrosc 2017:2365746. https://doi.org/10.1155/2017/2365746

    Article  CAS  Google Scholar 

  36. Khurana R, Uversky VN, Nielsen L, Fink AL (2001) Is Congo red an amyloid-specific dye? J Biol Chem 276:22715–22721

    CAS  PubMed  Google Scholar 

  37. Rasouli S, Abdolvahabi A, Croom CM, Plewman DL, Shi Y, Ayers JI, Shaw BF (2017) Lysine acylation in superoxide dismutase-1 electrostatically inhibits formation of fibrils with prion-like seeding. J Biol Chem 292:19366–19380

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bekard IB, Dunstan DE (2009) Tyrosine autofluorescence as a measure of bovine insulin fibrillation. Biophys J 97:2521–2531

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Verdian-Doghaei A, Housaindokht MR (2015) Spectroscopic study of the interaction of insulin and its aptamer–sensitive optical detection of insulin. J Lumin 159:1–8

    CAS  Google Scholar 

  40. Karizak AZ, Divsalar A, Asl AL, Fateminasab F, Shityakov S, Saboury AA (2022) Molecular insights into the interaction of 5-fluorouracil and Fe3O4 nanoparticles with beta-casein: an experimental and theoretical study. Spectrochim Acta Part A Mol Biomol Spectrosc 267:120538

    Google Scholar 

  41. Grudzielanek S, Jansen R, Winter R (2005) Solvational tuning of the unfolding, aggregation and amyloidogenesis of insulin. J Mol Biol 351:879–894

    CAS  PubMed  Google Scholar 

  42. Kurouski D, Washington J, Ozbil M, Prabhakar R, Shekhtman A, Lednev IK (2012) Disulfide bridges remain intact while native insulin converts into amyloid fibrils. PLoS ONE 7:e36989

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ortiz C, Zhang D, Xie Y, Davisson VJ, Ben-Amotz D (2004) Identification of insulin variants using Raman spectroscopy. Anal Biochem 332:245–252

    CAS  PubMed  Google Scholar 

  44. Siddiqi MK, Alam P, Iqbal T, Majid N, Malik S, Nusrat S, Alam A, Ajmal MR, Uversky VN, Khan RH (2018) Elucidating the inhibitory potential of designed peptides against amyloid fibrillation and amyloid associated cytotoxicity. Front Chem 6:311

    PubMed  PubMed Central  Google Scholar 

  45. Mangialardo S, Piccirilli F, Perucchi A, Dore P, Postorino P (2012) Raman analysis of insulin denaturation induced by high-pressure and thermal treatments. J Raman Spectrosc 43:692–700

    CAS  Google Scholar 

  46. Sahu SK (2013) Development and evaluation of insulin incorporated nanoparticles for oral administration. Int Scholarly Res Notices 2013:591751. https://doi.org/10.1155/2013/591751

    Article  CAS  Google Scholar 

  47. Ambrose E, Elliott A (1951) Infra-red spectroscopic studies of globular protein structure. Proc R Soc Lond A 208:75–90

    CAS  Google Scholar 

  48. Zurdo J, Guijarro J, Jiménez JL, Saibil HR, Dobson CM (2001) Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain. J Mol Biol 311:325–340

    CAS  PubMed  Google Scholar 

  49. Stepanenko OV, Marabotti A, Kuznetsova IM, Turoverov KK, Fini C, Varriale A, Staiano M, Rossi M, D’Auria S (2008) Hydrophobic interactions and ionic networks play an important role in thermal stability and denaturation mechanism of the porcine odorant-binding protein. Proteins Struct Funct Bioinform 71:35–44

    CAS  Google Scholar 

  50. Arora A, Ha C, Park CB (2004) Insulin amyloid fibrillation at above 100 C: new insights into protein folding under extreme temperatures, Protein sci. 13:2429–2436

  51. Malik M, Sharma H, Saini C (2016) Effect of removal of phenolic compounds on structural and thermal properties of sunflower protein isolate. J Food Sci Technol 53:3455–3464

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Haghighi-Poodeh S, Kurganov B, Navidpour L, Yaghmaei P, Ebrahim-Habibi A (2020) Characterization of arginine preventive effect on heat-induced aggregation of insulin. Int J Biol Macromol 145:1039–1048

    CAS  PubMed  Google Scholar 

  53. Kamelnia E, Divsalar A, Darroudi M, Yaghmaei P, Sadri K (2020) Synthesis, 99mTc-radiolabeling, and biodistribution of new cellulose nanocrystals from Dorema kopetdaghens. Int J Biol Macromol 146:299–310

    CAS  PubMed  Google Scholar 

  54. Abdel-Wahab YHA, O’Harte FPM, Boyd AC, Barnett CR, Flatt PR (1997) Glycation of insulin results in reduced biological activity in mice. Acta Diabetol 34:265–270

    CAS  PubMed  Google Scholar 

  55. Wang Y, Luo Y, Zhong R (2007) Investigation on insulin tyrosine modification mediated by peroxynitrite. In: 2007 IEEE/ICME International Conference on Complex Medical Engineering, pp 1813–1816

  56. Havelund S, Plum A, Ribel U, Jonassen I, Vølund A, Markussen J, Kurtzhals P (2004) The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm Res 21:1498–1504

    CAS  PubMed  Google Scholar 

  57. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J et al (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23:607–618

    CAS  PubMed  Google Scholar 

  58. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    CAS  PubMed  Google Scholar 

  59. Narita T, Weinert BT, Choudhary C (2019) Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol 20:156–174

    CAS  PubMed  Google Scholar 

  60. Kosanam H, Thai K, Zhang Y, Advani A, Connelly KA, Diamandis EP, Gilbert RE (2014) Diabetes induces lysine acetylation of intermediary metabolism enzymes in the kidney. Diabetes 63:2432–2439

    PubMed  Google Scholar 

  61. Zhang Y, Zhou F, Bai M, Liu Y, Zhang L, Zhu Q et al (2019) The pivotal role of protein acetylation in linking glucose and fatty acid metabolism to β-cell function. Cell Death Dis 10:66

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Szewczak J, Bierczyńska-Krzysik A, Piejko M, Mak P, Stadnik D (2015) Isolation and characterization of acetylated derivative of recombinant insulin Lispro produced in Escherichia coli. Pharm Res 32:2450–2457

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The support of the Institute of Biochemistry and Biophysics of the University of Tehran, Iran, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

This work reports part of RK project thesis to which BG and AEH have been supervisors and FM has been an advisor. The project was defined and discussed upon by BG, AEH, FM and RK, followed by supervisions, data checking and discussions by the supervisors and advisor as well as SPS. RK did the main body of the experiments, and AG and AZK have taken part into the research experiments and data analysis. First draft has been prepared by RK with help from AZK and revised by SPS. All authors have taken part in further revising and finalizing the manuscript.

Corresponding authors

Correspondence to Bahram Goliaei or Azadeh Ebrahim-Habibi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamelnia, R., Goliaei, B., Peyman Shariatpanahi, S. et al. Chemical Modification of the Amino Groups of Human Insulin: Investigating Structural Properties and Amorphous Aggregation of Acetylated Species. Protein J 42, 383–398 (2023). https://doi.org/10.1007/s10930-023-10131-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10131-7

Keywords

Navigation