Skip to main content
Log in

Ternary System of Solution Additives with Arginine and Salt for Refolding of Beta-Galactosidase

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

l-Arginine hydrochloride (Arg HCl) has been used for protein refolding as a universal aggregation suppressor for monomeric proteins. This paper presents an investigation of the refolding of tetrameric beta-galactosidase (β-gal) using Arg HCl and other salts. In a binary system using only Arg HCl, the refolding yield of β-gal increased with increasing concentration up to 0.2 M. However, the refolding yield sharply decreased above this concentration, reaching the level below the control yield of 5% at 0.5 M and near zero above 0.75 M, an observation unexpected from monomeric proteins. In a ternary system using both 0.2 M Arg HCl and another salt, the refolding yield increased up to 1.5-fold higher than that in the binary system. These data indicate that aggregation suppressive effects of protein increase with Arg HCl concentration, but also are deleterious to self-association of the protein. This dual nature of Arg HCl effects may have to be taken into account in its application for refolding of oligomeric proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Arg HCl:

l-Arginine hydrochloride

β-gal:

Beta-galactosidase

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

Gdn HCl:

Guanidine hydrochloride

Tween 20:

Polyoxyethylene sorbitan monolaurate

Na3-citrate:

Trisodium citrate

Tris-HCl:

Tris(hydroxymethyl)aminomethane hydrochloride

ONPG:

o-Nitrophenyl-β-d-galactopyranoside

References

  1. Arakawa T, Ejima D, Tsumoto K, Obeyama N, Tanaka Y, Kita Y, Timasheff SN (2007) Biophys Chem 127:1–8

    Article  CAS  Google Scholar 

  2. Arakawa T, Tsumoto K (2003) Biochem Biophys Res Commun 304:148–152

    Article  CAS  Google Scholar 

  3. Asano R, Kudo T, Makabe K, Tsumoto K, Kumagai I (2002) FEBS Lett 528:70–76

    Article  CAS  Google Scholar 

  4. Ayling A, Baneyx F (1996) Protein Sci 5:478–487

    CAS  Google Scholar 

  5. Bachhawat K, Kapoor M, Dam TK, Surolia A (2001) Biochemistry 40:7291–7300

    Article  CAS  Google Scholar 

  6. Baldwin RL (1996) Biophys J 71:2056–2063

    Article  CAS  Google Scholar 

  7. Baynes BM, Trout BL (2004) Biophys J 87:1631–1639

    Article  CAS  Google Scholar 

  8. Baynes BM, Wang DI, Trout BL (2005) Biochemistry 44:4919–4925

    Article  CAS  Google Scholar 

  9. Brinkmann U, Buchner J, Pastan I (1992) Proc Natl Acad Sci USA 89:3075–3079

    Article  CAS  Google Scholar 

  10. Buchner J, Rudolph R (1991) Biotechnology (NY) 9:157–162

    Article  CAS  Google Scholar 

  11. Charles JE, Robert FG (1963) J Biol Chem 283:1380–1383

    Google Scholar 

  12. Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003) Pharm Res 20:1325–1336

    Article  CAS  Google Scholar 

  13. Dev S, ND K, Sinha S, Surolia A (2006) IUBMB Life 58:549–555

    Article  CAS  Google Scholar 

  14. Fischer BE (1994) Biotechnol Adv 12:89–101

    Article  CAS  Google Scholar 

  15. Fitter J (2009) Cell Mol Life Sci 66:1672–1681

    Article  CAS  Google Scholar 

  16. Freeman BC, Morimoto RI (1996) EMBO J 15:2969–2979

    CAS  Google Scholar 

  17. Gao YG, Guan YX, Yao SJ, Cho MG (2003) Biotechnol Prog 19:915–920

    Article  CAS  Google Scholar 

  18. Hamada H, Arakawa T, Shiraki K (2009) Curr Pharm Biotechnol 10:400–407

    Article  CAS  Google Scholar 

  19. He J, Wang G, Xu R, Feng J, Wang J, Su H, Song H (2008) Appl Biochem Biotechnol 151:29–41

    Article  CAS  Google Scholar 

  20. Hirano A, Arakawa T, Shiraki K (2008) J Biochem 144:363–369

    Article  CAS  Google Scholar 

  21. Hirano A, Hamada H, Okubo T, Noguchi T, Higashibata H, Shiraki K (2007) Protein J 26:423–433

    Article  CAS  Google Scholar 

  22. Jacobson RH, Zhang XJ, DuBose RF, Matthews BW (1994) Nature 369:761–766

    Article  CAS  Google Scholar 

  23. Kamna J, Arshad J, Debendra KS (2008) Process Biochem 43:587–597

    Article  CAS  Google Scholar 

  24. Li M, Su ZG, Janson JC (2004) Protein Exp Purif 33:1–10

    Article  CAS  Google Scholar 

  25. Li S, Bai JH, Park YD, Zhou HM (2001) Int J Biochem Cell Biol 33:279–286

    Article  CAS  Google Scholar 

  26. Lin WJ, Traugh JA (1993) Protein Exp Purif 4:256–264

    Article  CAS  Google Scholar 

  27. Melander W, Horvath C (1977) Arch Biochem Biophys 183:200–215

    Article  CAS  Google Scholar 

  28. Mishra R, Seckler R, Bhat R (2005) J Biol Chem 280:15553–15560

    Article  CAS  Google Scholar 

  29. Neet KE, Timm DE (1994) Protein Sci 3:2167–2174

    Article  CAS  Google Scholar 

  30. O’Brien EP, Dima RI, Brooks B, Thirumalai D (2007) J Am Chem Soc 129:7346–7353

    Article  CAS  Google Scholar 

  31. Oneda H, Inouye K (1999) J Biochem 126:905–911

    CAS  Google Scholar 

  32. Rattenholl A, Lilie H, Grossmann A, Stern A, Schwarz E, Rudolph R (2001) Eur J Biochem 268:3296–3303

    Article  CAS  Google Scholar 

  33. Reddy KRC, Lilie H, Rudolph R, Lange C (2005) Protein Sci 14:929–935

    Article  CAS  Google Scholar 

  34. Rudolph R, Lilie H (1996) FASEB J 10:49–56

    CAS  Google Scholar 

  35. Shiraki K, Kudou M, Fujiwara S, Imanaka T, Takagi M (2002) J Biochem 132:591–595

    CAS  Google Scholar 

  36. Stoyan T, Michaelis U, Schooltink H, Van Dam M, Rudolph R, Heinrich PC, Rose-John S (1993) Eur J Biochem 216:239–245

    Article  CAS  Google Scholar 

  37. Suenaga M, Ohmae H, Tsuji S, Itoh T, Nishimura O (1998) Biotechnol Appl Biochem 28:119–124

    CAS  Google Scholar 

  38. Tanaka N, Nakao S, Wadai H, Ikeda S, Chatellier J, Kunugi S (2002) Proc Natl Acad Sci USA 99:15398–15403

    Article  CAS  Google Scholar 

  39. Taneja S, Ahmad F (1994) Biochem J 303:147–153

    CAS  Google Scholar 

  40. Togashi H, Nara T, Sekikawa C, Kawakami M, Yaginuma N, Tsunoda T, Sakaguchi K, Mizukami F (2009) Biotechnol Prog 25:200–206

    Article  CAS  Google Scholar 

  41. Tsumoto K, Ejima D, Kumagai I, Arakawa T (2003) Protein Exp Purif 28:1–8

    Article  CAS  Google Scholar 

  42. Tsumoto K, Shinoki K, Kondo H, Uchikawa M, Juji T, Kumagai I (1998) J Immunol Methods 219:119–129

    Article  CAS  Google Scholar 

  43. Tsumoto K, Umetsu M, Kumagai I, Ejima D, Philo JS, Arakawa T (2004) Biotechnol Prog 20:1301–1308

    Article  CAS  Google Scholar 

  44. Umetsu M, Tsumoto K, Hara M, Ashish K, Goda S, Adschiri T, Kumagai I (2003) J Biol Chem 278:8979–8987

    Article  CAS  Google Scholar 

  45. Wang XT, Engel PC (2009) BMC Biotechnol 9:19

    Article  CAS  Google Scholar 

  46. Yin FY, Chen YH, Yu CM, Pon YC, Lee HJ (2007) Biophys J 93:1235–1245

    Article  CAS  Google Scholar 

  47. Zhi W, Landry SJ, Gierasch LM, Srere PA (1992) Protein Sci 1:522–529

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Tsukuba Industrial Liaison and Cooperative Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Shiraki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimoto, A., Hirano, A. & Shiraki, K. Ternary System of Solution Additives with Arginine and Salt for Refolding of Beta-Galactosidase. Protein J 29, 161–166 (2010). https://doi.org/10.1007/s10930-010-9235-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9235-7

Keywords

Navigation