Skip to main content
Log in

Phosphoinositide 3-kinase γ has Multiple Phospholipid Binding Sites

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Phosphoinositide 3-kinase γ is a multifunctional enzyme with lipid and protein kinase activities that also acts as a scaffold protein in many diverse signalling processes. The enzyme contains five different domains, but their individual contributions to membrane binding are not fully understood. Here, using in vitro liposome binding assays of individual domains and deletion constructs of human phosphoinositide 3-kinase γ, we show that each domain is capable of binding anionic phospholipids to varying degrees, depending on the charge of the anionic substrate. Moreover, with the exception of the C2-domain, deletion of any single protein domain results in a complete loss of kinase activity toward both lipids and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PI3 Kγ:

Phosphoinositide 3-kinase γ

NtD:

N-terminal domain (the first N-terminal 219 aminoacids of PI3 Kγ)

RBD:

Ras binding domain

C2D:

C2 domain

helD:

Helical domain

catD:

Catalytic domain

NtD-Del:

Deletion mutant, where NtD is missing

RBD-Del:

Deletion mutant, where RBD is missing

C2D-Del:

Deletion mutant, where C2D is missing

helD-Del:

Deletion mutant, where helD is missing

PtdIns:

Phosphatidylinositol

PtdIns(4)P:

Phosphatidylinositol-4-phosphate

PtdIns(4,5)P2 :

Phosphatidylinositol-4,5-bisphosphate

PtdSer:

Phosphatidylserine

PA:

Phosphatidate

Rh-PtdEtn:

Rhodamine-PtdEtn

Chol:

Cholesterol

Pam:

Palmitic acid

Ste:

Stearic acid

Δ4Ach:

Arachidonic acid

References

  1. Brock C, Schaefer M, Reusch HP, Czupalla C, Michalke M, Spicher K, Schultz G, Nurnberg B (2003) Roles of G beta gamma in membrane recruitment and activation of p110 gamma/p101 phosphoinositide 3-kinase gamma. J Cell Biol 160:89–99

    Article  CAS  Google Scholar 

  2. Buckland AG, Wilton DC (2000) Anionic phospholipids, interfacial binding and the regulation of cell functions. Biochim Biophys Acta 1483:199–216

    CAS  Google Scholar 

  3. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  Google Scholar 

  4. Das S, Dixon JE, Cho W (2003) Membrane-binding and activation mechanism of PTEN. Proc Natl Acad Sci USA 100:7491–7496

    Article  CAS  Google Scholar 

  5. Hawkins PT, Anderson KE, Davidson K, Stephens LR (2006) Signalling through Calss I PI3 Ks in mammalian cells. Biochem Soc Trans 34:647–662

    Article  CAS  Google Scholar 

  6. Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, Meyer T (2006) PI(3, 4, 5)P3 and PI(4, 5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–1461

    Article  CAS  Google Scholar 

  7. Hirsch E, Lembo G, Montrucchio G, Rommel C, Costa C, Barberis L (2006) Signaling through PI3 Kgamma: a common platform for leukocyte, platelet and cardiovascular stress sensing. Thromb Haemost 95:29–35

    CAS  Google Scholar 

  8. Hurley JH, Misra S (2000) Signaling and subcellular targeting by membrane-binding domains. Annu Rev Biophys Biomol Struct 29:49–79

    Article  CAS  Google Scholar 

  9. Kirsch C, Wetzker R, Klinger R (2001) Anionic phospholipids are involved in membrane targeting of PI 3-kinase gamma. Biochem Biophys Res Commun 282:691–696

    Article  CAS  Google Scholar 

  10. Knauth P, Schlüter T, Czubayko M, Kirsch C, Florian V, Schreckenberger S, Hahn H, Bohnensack R (2005) Functions of sorting nexin 17 domains and recognition motif for P- selectin trafficking. J Mol Biol 347(4):813–825

    Article  CAS  Google Scholar 

  11. Lawe DC, Patki V, Heller-Harrison R, Lambright D, Corvera S (2000) The FYVE domain of early endosome antigen 1 is required for both phosphatidylinositol 3-phosphate and Rab5 binding. Critical role of this dual interaction for endosomal localization. J Biol Chem 275:3699–3705

    Article  CAS  Google Scholar 

  12. Maier U, Babich A, Nurnberg B (1999) Roles of non-catalytic subunits in gbetagamma-induced activation of class I phosphoinositide 3-kinase isoforms beta and gamma. J Biol Chem 274:29311–29317

    Article  CAS  Google Scholar 

  13. McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–611

    Article  CAS  Google Scholar 

  14. Mitchell DA, Marshall TK, Deschenes RJ (1993) Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 9:715–722

    Article  CAS  Google Scholar 

  15. Mochly-Rosen D, Gordon AS (1998) Anchoring proteins for protein kinase C: a means for isozyme selectivity. Faseb J 12:35–42

    CAS  Google Scholar 

  16. Murray D, Arbouzova A, Honig B, McLaughlin S (2002) The role of electrostatic and nonpolar interaction in the association of peripheral proteins with membranes. Curr Top Membr 52:271–301

    Google Scholar 

  17. Naga Prasad SV, Laporte SA, Chamberlain D, Caron MG, Barak L, Rockman HA (2002) Phosphoinositide 3-kinase regulates beta2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/beta-arrestin complex. J Cell Biol 158:563–575

    Article  Google Scholar 

  18. Nomikos M, Mulgrew-Nesbitt A, Pallavi P, Mihalyne G, Zaitseva I, Swann K, Lai FA, Murray D, McLaughlin S (2007) Binding of phosphoinositide-specific phospholipase C-zeta (PLC-zeta) to phospholipid membranes: potential role of an unstructured cluster of basic residues. J Biol Chem 282:16644–16653

    Article  CAS  Google Scholar 

  19. Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, Hawkins PT, Stephens L, Eccleston JF, Williams RL (2000) Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell 103:931–943

    Article  CAS  Google Scholar 

  20. Pap EH, Bastiaens PI, Borst JW, van den Berg PA, van Hoek A, Snoek GT, Wirtz KW, Visser AJ (1993) Quantitation of the interaction of protein kinase C with diacylglycerol and phosphoinositides by time-resolved detection of resonance energy transfer. Biochemistry 32:13310–13317

    Article  CAS  Google Scholar 

  21. Patrucco E, Notte A, Barberis L, Selvetella G, Maffei A, Brancaccio M, Marengo S, Russo G, Azzolino O, Rybalkin SD, Silengo L, Altruda F, Wetzker R, Wymann MP, Lembo G, Hirsch E (2004) PI3 Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118:375–387

    Article  CAS  Google Scholar 

  22. Pawson T, Nash P (2003) Assembly of cell regulatory systems through protein interaction domains. Science 300:445–452

    Article  CAS  Google Scholar 

  23. Philip F, Guo Y, Scarlata S (2002) Multiple roles of pleckstrin homology domains in phospholipase Cbeta function. FEBS Lett 531:28–32

    Article  CAS  Google Scholar 

  24. Rapedius M, Soom M, Shumilina E, Schulze D, Schönherr R, Kirsch C, Lang F, Tucker SJ, Baukrowitz T (2005) Long chain CoA esters as competitive antagonists of phosphatidylinositol 4, 5-bisphosphate activation in Kir channels. J Biol Chem 280(35):30760–30767

    Article  CAS  Google Scholar 

  25. Rosenhouse-Dantsker A, Logothetis DE (2007) Molecular characteristics of phosphoinositide binding. Pflugers Arch 455:45–53

    Article  CAS  Google Scholar 

  26. Sanchez-Bautista S, Marin-Vicente C, Gomez-Fernandez JC, Corbalan-Garcia S (2006) The C2 Domain of PKCα Is a Ca2 + -dependent PtdIns(4, 5)P2 Sensing Domain: A New Insight into an Old Pathway. J Mol Biol 362:901–914

    Article  CAS  Google Scholar 

  27. Scheglmann D, Werner K, Eiselt G, Klinger R (2002) Role of paired basic residues of protein C-termini in phospholipid binding. Protein Eng 15:521–528

    Article  CAS  Google Scholar 

  28. Soom M, Schonherr R, Kubo Y, Kirsch C, Klinger R, Heinemann SH (2001) Multiple PIP2 binding sites in Kir2.1 inwardly rectifying potassium channels. FEBS Lett 490(1–2):49–53

    Article  CAS  Google Scholar 

  29. Stephens LR, Eguinoa A, Erdjument-Bromage H, Lui M, Cooke F, Coadwell J, Smrcka AS, Thelen M, Cadwallader K, Tempst P, Hawkins PT (1997) The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 89:105–114

    Article  CAS  Google Scholar 

  30. Stephens L, Smrcka A, Cooke FT, Jackson TR, Sternweis PC, Hawkins PT (1994) A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell 77:83–93

    Article  CAS  Google Scholar 

  31. Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nurnberg B et al (1995) Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269:690–693

    Article  CAS  Google Scholar 

  32. Suire S, Coadwell J, Ferguson GJ, Davidson K, Hawkins P, Stephens L (2005) p84, a new Gbetagamma-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110gamma. Curr Biol 15:566–570

    Article  CAS  Google Scholar 

  33. Walker EH, Perisic O, Ried C, Stephens L, Williams RL (1999) Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 402:313–320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, C., Schilli-Westermann, M., Klinger, R. et al. Phosphoinositide 3-kinase γ has Multiple Phospholipid Binding Sites. Protein J 29, 127–135 (2010). https://doi.org/10.1007/s10930-010-9232-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-010-9232-x

Keywords

Navigation