Skip to main content
Log in

Conformational Isomers of Denatured and Unfolded Proteins: Methods of Production and Applications

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Conformational isomers of denatured-unfolded proteins are rich in numbers and varied in shapes. They represent an opulent resource of biological molecules that have remained unexploited. The major obstacle in utilizing this untapped potential is that it is inherently difficult to isolate and characterize pure conformational isomers, not only because of the excessive large number, but also because of their instability and rapid inter-conversion. Our lab has developed a method for trapping selected conformational isomers of denatured proteins that are amenable to isolation, characterization and further applications. The method has potential usefulness, ranging from the comprehensive structural characterization of denatured proteins, to the elucidation of pathways of protein unfolding–folding, to the production of unlimited structurally defined non-native protein isomers for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

α-LA:

α-Lactalbumin

HPLC:

High pressure liquid chromatography

MALDI-TOF:

Matrix assisted laser desorption ionization/time-of flight

BPTI:

Bovine pancreatic trypsin inhibitor

TAP:

Tick anticoagulant peptide

References

  1. Baldwin RL (2002) Adv Protein Chem 62:361–366

    Article  CAS  Google Scholar 

  2. Dill KA, Shortle D (1991) Annu Rev Biochem 60:795–825

    Article  CAS  Google Scholar 

  3. Millett IS, Doniach S, Plaxco KW (2002) Adv Protein Chem 62:241–262

    Article  CAS  Google Scholar 

  4. Shortle D (2002) Adv Protein Chem 62:1–23

    Article  CAS  Google Scholar 

  5. Anfinsen CB (1973) Science 181:223–230

    Article  CAS  Google Scholar 

  6. Arolas JL, Aviles FX, Chang J-Y, Ventura S (2006) Trends Biochem Sci 31:292–301

    Article  CAS  Google Scholar 

  7. Baldwin RL (1989) Trends Biochem Sci 14:291–294

    Article  CAS  Google Scholar 

  8. Creighton TE (1992) Science 256:111–114

    Article  CAS  Google Scholar 

  9. Daggett V, Fersht AR (2003) Trends Biochem Sci 28:18–25

    Article  CAS  Google Scholar 

  10. Dill KA (1990) Biochemistry 29:7133–7155

    Article  CAS  Google Scholar 

  11. Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) Annu Rev Biophys 37:289–316

    Article  CAS  Google Scholar 

  12. Narayan M, Welker E, Wedemeyer WJ, Scheraga HA (2000) Acc Chem Res 33:805–812

    Article  CAS  Google Scholar 

  13. Ptitsyn OB (1987) J Protein Chem 6:273–293

    Article  CAS  Google Scholar 

  14. Kim PS, Baldwin RL (1990) Annu Rev Biochem 59:631–660

    Article  CAS  Google Scholar 

  15. Chiti F, Dobson CM (2006) Annu Rev Biochem 75:333–366

    Article  CAS  Google Scholar 

  16. Aguzzi A, Heikenwalder M, Polymenidou M (2007) Nat Rev Mol Cell Biol 8:552–561

    Article  CAS  Google Scholar 

  17. Caughey B, Baron GS (2006) Nature 443:803–810

    Article  CAS  Google Scholar 

  18. Cohen FE, Prusiner SB (1998) Annu Rev Biochem 67:793–819

    Article  CAS  Google Scholar 

  19. Collinge J (2001) Annu Rev Neurosci 24:519–550

    Article  CAS  Google Scholar 

  20. Soto C, Estrada LD (2008) Arch Neurol 65:184–189

    Article  Google Scholar 

  21. Cookson MR (2005) Annu Rev Biochem 74:29–52

    Article  CAS  Google Scholar 

  22. El-Agnaf OMA, Salem SA, Paleologou KE et al (2006) FEBS J 20:419–425

    CAS  Google Scholar 

  23. Harper JD, Lansbury PT (1997) Annu Rev Biochem 66:385–407

    Article  CAS  Google Scholar 

  24. Selkoe DJ, Schenk D (2003) Annu Rev Pharmacol Toxicol 43:545–584

    Article  CAS  Google Scholar 

  25. Bessen RA, Kocisko DA, Raymond GJ, Nandan S, Lansbury PT, Caughey B (1995) Nature 375:698–700

    Article  CAS  Google Scholar 

  26. Caughey B, Raymond GJ, Bessen RA (1998) J Biol Chem 273:32230–32235

    Article  CAS  Google Scholar 

  27. Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, FE Cohen, SB Prusiner (1998) Nat Med 4:1157–1165

    Article  CAS  Google Scholar 

  28. Atassi MZ, Casali P (2008) Autoimmunity 41:123–132

    Article  CAS  Google Scholar 

  29. Bernales S, Papa FR, Walter P (2006) Annu Rev Cell Dev Biol 22:487–508

    Article  CAS  Google Scholar 

  30. Schroeder M, Kaufman RJ (2005) Annu Rev Biochem 74:739–789

    Article  CAS  Google Scholar 

  31. Chang J-Y, Lu B-Y, Li L (2005) Anal Biochem 342:78–85

    Article  CAS  Google Scholar 

  32. Jiang C, Chang J-Y (2005) FEBS Lett 579:3927–3931

    Article  CAS  Google Scholar 

  33. Elliott S, Chang D, Delorme E, Dunn C, Egrie J, Giffin J, Lorenzini T, Talbot C, Hesterberg L (1996) Blood 87:2714–2722

    CAS  Google Scholar 

  34. Maas C, Hermeling S, Bouma B, Jiskoot W, Gebbink MFBG (2006) J Biol Chem 282:2229–2236

    Article  CAS  Google Scholar 

  35. Chang J-Y (2002) J Biol Chem 277:120–126

    Article  CAS  Google Scholar 

  36. Chang J-Y, Li L (2001) J Biol Chem 276:9705–9712

    Article  CAS  Google Scholar 

  37. Chang J-Y (1999) J Biol Chem 274:123–128

    Article  CAS  Google Scholar 

  38. Chang J-Y (1995) J Biol Chem 270:25661–25666

    CAS  Google Scholar 

  39. Chang J-Y, Li L, Canals F, Aviles FX (2000) J Biol Chem 275:14205–14211

    Article  CAS  Google Scholar 

  40. Bader MW, Bardwell JC (2001) Adv Protein Chem 59:283–301

    Article  CAS  Google Scholar 

  41. Kadokura H, Katzen F, Beckwith J (2003) Annu Rev Biochem 72:111–135

    Article  CAS  Google Scholar 

  42. Freedman RB, Hirst TR, Tuite MF (1994) Trend Biochem Sci 19:331–336

    Article  CAS  Google Scholar 

  43. Gilbert HF (1997) J Biol Chem 272:29399–29402

    Article  CAS  Google Scholar 

  44. Wilkinson B, Gilbert HF (2004) Biochim Biophys Acta 1699:35–44

    Article  CAS  Google Scholar 

  45. Chang J-Y, Lu B-Y, Lai PH (2006) Biochem J 394:249–257

    Article  CAS  Google Scholar 

  46. Pace CN (1986) Methods Enzymol 131:266–280

    Article  CAS  Google Scholar 

  47. Dyson HJ, Wright PE (1996) Annu Rev Phys Chem 47:369–395

    Article  CAS  Google Scholar 

  48. Englander SW, Mayne L (1992) Annu Rev Biophys Biomol Struct 21:243–265

    Article  CAS  Google Scholar 

  49. Shortle DR (1996) Curr Opin Struct Biol 6:24–30

    Article  CAS  Google Scholar 

  50. Dyson HJ, Wright PE (2004) Chem Rev 104:3607–3622

    Article  CAS  Google Scholar 

  51. Wong KB, Clarke J, Bond CJ, Neira JL, Freund SM, Fersht AR, Daggett V (2000) J Mol Biol 296:1257–1282

    Article  CAS  Google Scholar 

  52. Yi Q, Scalley-Kim ML, Alm EJ, Baker D (2000) J Mol Biol 299:1341–1351

    Article  CAS  Google Scholar 

  53. Religa TL, Markson JS, Mayor U, Freund SM, Fersht AR (2005) Nature 437:1053–1056

    Article  CAS  Google Scholar 

  54. Sari N, Alexander P, Bryan PN, Orban J (2000) Biochemistry 39:965–977

    Article  CAS  Google Scholar 

  55. Neri D, Billeter M, Wider G, Wuthrich K (1992) Science 257:1559–1563

    Article  CAS  Google Scholar 

  56. Russell BS, Melenkivitz R, Bren KL (2000) Proc Natl Acad Sci U S A 97:8312–8317

    Article  CAS  Google Scholar 

  57. Shortle D, Abeygunawardana C (1993) Structure 1:121–134

    Article  CAS  Google Scholar 

  58. Alexandrescu AT, Evans PA, Pitkeathly M, Baum J, Dobson CM (1993) Biochemistry 32:1707–1718

    Article  CAS  Google Scholar 

  59. Wirmer J, Berk H, Ugolini R, Redfield C, Schwalbe H (2006) Protein Sci 15:1397–1407

    Article  CAS  Google Scholar 

  60. McCarney ER, Kohn JE, Plaxco KW (2005) Crit Rev Biochem Mol Biol 40:181–189

    Article  CAS  Google Scholar 

  61. Shortle D, Ackerman MS (2001) Science 293:487–489

    Article  CAS  Google Scholar 

  62. Smith LJ, Fiebig KM, Schwalbe H, Dobson CM (1996) Fold Des 1:95–106

    Article  Google Scholar 

  63. Chang J-Y, Ballatore A (2000) FEBS Lett 473:183–187

    Article  CAS  Google Scholar 

  64. Chang J-Y, Li L (2002) FEBS Lett 511:73–78

    Article  CAS  Google Scholar 

  65. Chang J-Y, Maerki W, Lai PH (1999) Protein Sci 8:1463–1468

    Article  CAS  Google Scholar 

  66. Salamanca S, Villegas V, Vendrell J, Aviles FX, Chang J-Y (2002) J Biol Chem 277:17538–17543

    Article  CAS  Google Scholar 

  67. Creighton TE (1986) Methods Enzymol 131:83–106

    Article  CAS  Google Scholar 

  68. Scheraga HA, Wedemeyer WJ, Welker E (2001) Methods Enzymol 341:189–221

    Article  CAS  Google Scholar 

  69. Goldenberg DP (1992) Trends Biochem Sci 17:257–261

    Article  CAS  Google Scholar 

  70. Weissman JS, Kim PS (1991) Science 253:1386–1393

    Article  CAS  Google Scholar 

  71. Rothwarf D, Li Y-J, Scheraga HA (1998) Biochemistry 37:3760–3766

    Article  CAS  Google Scholar 

  72. Welker E, Narayan M, Wedemeyer WJ, Scheraga HA (2001) Proc Natl Acad Sci 98:2312–2316

    Article  CAS  Google Scholar 

  73. Chang J-Y (1994) Biochem J 300:643–650

    CAS  Google Scholar 

  74. Chatrenet B, Chang J-Y (1993) J Biol Chem 268:20988–20996

    CAS  Google Scholar 

  75. Dill KA, Chan HS (1997) Nat Struct Biol 4:10–18

    Article  CAS  Google Scholar 

  76. Schultz CP (2000) Nat Struct Biol 7:7–10

    Article  CAS  Google Scholar 

  77. Antuch W, Güntert P, Billeter M, Hawthorne T, Grossenbacher H, Wüthrich K (1994) FEBS Lett 352:251–257

    Article  CAS  Google Scholar 

  78. Lim-Wilby MSL, Hallenga K, De Maeyer M, Lasters I, Vlasuk GP, Brunck TK (1995) Protein Sci 4:178–186

    Article  CAS  Google Scholar 

  79. Chang J-Y, Li L (2005) Arch Biochem Biophys 437:85–95

    Article  CAS  Google Scholar 

  80. Chang J-Y (1996) Biochemistry 35:11702–11709

    Article  CAS  Google Scholar 

  81. Li L, Chang J-Y (2004) Protein J 23:3–10

    Article  CAS  Google Scholar 

  82. Singh RR, Chang J-Y (2004) Biochem J 377:685–692

    Article  CAS  Google Scholar 

  83. Lin C-J, Chang J-Y (2006) Biochemistry 45:6231–6240

    Article  CAS  Google Scholar 

  84. Jiang C, Chang J-Y (2007) Biochemistry 46:602–609

    Article  CAS  Google Scholar 

  85. Lu BY, Chang J-Y (2007) Arch Biochem Biophys 460:75–84

    Article  CAS  Google Scholar 

  86. Lu B-Y, Jiang C, Chang J-Y (2005) Biochemistry 44:15032–15041

    Article  CAS  Google Scholar 

  87. Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003) Pharm Res 20:1325–1336

    Article  CAS  Google Scholar 

  88. Speed MA, Wang DIC, King J (1996) Nat Biotechnol 14:1283–1287

    Article  CAS  Google Scholar 

  89. Wang W (2005) Int J Pharm 289:1–30

    Article  CAS  Google Scholar 

  90. Yon JM (1996) Nat Biotechnol 14:1231–1232

    Article  CAS  Google Scholar 

  91. Hermeling S, Crommelin DJ, Schellekens H, Jiskoot W (2004) Pharm Res 21:897–903

    Article  CAS  Google Scholar 

  92. Schellekens H (2005) Nephrol Dial Transpl 20(Suppl 6):vi3–vi9

    Google Scholar 

  93. Dillon TM, Ricci MS, Vezina C, Flynn GC, Liu YD, Rehder DS, Plant M, Henkle B, Li Y, Deechongkit S, Varnum B, Wypych J, Balland A, Bondarenko PV (2008) J Biol Chem 283:16206–16215

    Article  CAS  Google Scholar 

  94. Wypych J, Li M, Guo A, Zhang Z, Martinez T, Allen MJ, Fodor S, Kelner DN, Flynn GC, Liu YD, Bondarenko PV, Ricci MS, Dillon TM, Balland A (2008) J Biol Chem 283:16194–16205

    Article  CAS  Google Scholar 

  95. Arias-Moreno X, Arolas LL, Aviles FX, Sancho J, Ventura S (2008) J Biol Chem 283:13627–13637

    Article  CAS  Google Scholar 

  96. Chang J-Y, Bulychev A, Li L (2001) FEBS Lett 487:298–300

    Article  Google Scholar 

  97. Wu LC, Peng ZY, Kim PS (1995) Nat Struct Biol 2:281–286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support of IsoVax Therapeutic Inc. and the endowment from the Robert Welch foundation. Both JYC and The University of Texas are share holders of IsoVax Therapeutic Inc. The author also thanks Dr. M. S. Sy for carrying out immunogenicity studies of X-α-LA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Yoa Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, JY. Conformational Isomers of Denatured and Unfolded Proteins: Methods of Production and Applications. Protein J 28, 44–56 (2009). https://doi.org/10.1007/s10930-009-9162-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-009-9162-7

Keywords

Navigation