Skip to main content
Log in

Stability of β-Lactoglobulin A in the Presence of Sugar Osmolytes Estimated from Their Guanidinium Chloride-Induced Transition Curves

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The stabilizing role of Trehalose, Sucrose, Sorbitol and Mannitol as sugar osmolytes and polyols on beta-lactoglobulin A (β-lgA) against its chemical denaturation at pH 2.0 and 25 °C has been explored by means of UV–vis spectroscopy. It has been observed that ΔG oD of β-lgA in the presence of 10% (w/v) Trehalose, Sucrose, Sorbitol and Mannitol is increased. We report that the functional dependence of ΔG D of proteins in the absence and the presence of sugar osmolytes on denaturant concentration is linear. Trehalose is found to induce remarkable stability of β-lgA against chemical denaturation. Furthermore, we assumed sugar osmolytes do not affect the secondary and tertiary structures of the native and GdnHCl-denatured states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

β-lgA:

β-Lactoglobulin A

ε:

Molar absorption coefficient

Δε292 :

Difference molar absorbance at 292 nm

ΔG D :

Gibbs free energy change

ΔG oD :

Gibbs free energy change in absence of denaturant at 25 °C

GdnHCl:

Guanidinium chloride

y N :

Optical property of the native state

y D :

Optical property of the denatured state

C m :

Midpoint of chemical denaturation

References

  1. Ahmad F, Contaxis CC, Bigelow CC (1983) J Biol Chem 258:7960–7963

    CAS  Google Scholar 

  2. Ali Dar T, Singh LR, Ahmad F (2007) Biophys Chem 127:140–148

    Article  CAS  Google Scholar 

  3. Apenten RKO, Khokhar S, Galani D (2002) Food Hydrocolloids 16:95–103

    Article  CAS  Google Scholar 

  4. Arakawa T, Timasheff SN (1984) Biochem 23:5924–5929

    Article  CAS  Google Scholar 

  5. Arakawa T, Bhat R, Timasheff SN (1990) Biochem 29(7):1924–1931

    Article  CAS  Google Scholar 

  6. Back JF, Oakenfull D, Smith MB (1979) Biochem 18(23):5191–5196

    Article  CAS  Google Scholar 

  7. Bennion BJ, Daggett V (2003) Proc Natl Acad Sci USA 100:5142–5147

    Article  CAS  Google Scholar 

  8. Bolen DW (2004) Methods 34:312–322

    Article  CAS  Google Scholar 

  9. Bolen DW, Baskakov IV (2001) J Mol Biol 310:955–963

    Article  CAS  Google Scholar 

  10. Breslow R, Guo T (1990) Proc Natl Acad Sci 87:167–169

    Article  CAS  Google Scholar 

  11. Courtenay ES, Capp MW, Saecker RM, Record MT (2000) J Proteins: Struct Funct Genet 41(suppl4):72–85

    Article  Google Scholar 

  12. D’Alfonso L, Collini M, Baldini G (2002) Biochem 41:326–333

    Article  CAS  Google Scholar 

  13. D’Alfonso L, Collini M, Baldini G (2003) Eur J Biochem 270:2497–2504

    Article  CAS  Google Scholar 

  14. Dill KA (1990) Biochem 29:7133–7155

    Article  CAS  Google Scholar 

  15. Divsalar A, Saboury AA, Moosavi-Movahedi AA, Mansoori-Torshizi H (2006) Int J Biol Macromol 38:9–17

    Article  CAS  Google Scholar 

  16. Fessas D, Iametti S, Schiraldi A, Bonomi F (2001) Eur J Biochem 268:5439–5448

    Article  CAS  Google Scholar 

  17. Flower DR (1996) Biochem J 318:1–14

    CAS  Google Scholar 

  18. Gekko K, Morikawa T (1981) J Biochem 90:51–60

    CAS  Google Scholar 

  19. Haque I, Singh R, Moosavi-Movahedi AA, Ahmad F (2005) Biophys Chem 117:1–12

    Article  CAS  Google Scholar 

  20. Kaushik JK, Bhat R (2003) J Biol Chem 278:26458–26465

    Article  CAS  Google Scholar 

  21. Kaushik JK, Bath R (1989) J Phys Chem 102:2520–2525

    Google Scholar 

  22. Kim YS, Jones LS, Dong A, Kendrick BS, Chang BS, Manning MC, Randolph TW, Carpenter JF (2003) Protein Sci 12:1252–1261

    Article  CAS  Google Scholar 

  23. Kulmyrzaev A, Bryant C, McClements DJ (2000) J Agric Food Chem 48:1593–1597

    Article  CAS  Google Scholar 

  24. Lee BK, Shimanouchi T, Umakoshi H, Kuboi R (2006) Biochem Eng J 28:79–86

    Article  CAS  Google Scholar 

  25. Liu Y, Bolen DW (1995) Biochem 34:12884–12891

    Article  CAS  Google Scholar 

  26. McClements DJ (2002) Crit Rev Food Sci Nutr 45:417–471

    Article  Google Scholar 

  27. Nami Hirota N, Yuji G (1999) Bioorg Med Chem 7:67–73

    Article  Google Scholar 

  28. Nandi PK, Robinson DR (1984) Biochemistry 23:6661–6668

    Article  CAS  Google Scholar 

  29. Pace CN (1986) Methods Enzymol 131:266–280

    Article  CAS  Google Scholar 

  30. Papiz MZ, Sawyer L, Eliopoulos EE, North AC, Findlay JB, Sivaprasadarao R, Jones TA, Newcomer ME, Kraulis PJ (1986) Nature 324:383–385

    Article  CAS  Google Scholar 

  31. Ratnaparkhi GS, Varadarajan R (2001) J Biol Chem 276:28789–28798

    Article  CAS  Google Scholar 

  32. Romero CM, Lozano JM, Sancho J, Giraldo GI (2007) Int J Biol Macromol 40:423–428

    Article  CAS  Google Scholar 

  33. Saunders AJ, Davis-Searles PR, Allen DL, Pielak GJ, Erie DA (2002) Biopolymer 53:293–307

    Article  Google Scholar 

  34. Schellman JA (2002) Biophys Chem 96:91–101

    Article  CAS  Google Scholar 

  35. Schellman JA (2003) Biophys J 85:108–125

    Article  CAS  Google Scholar 

  36. Stern JH, O’Connor ME (1972) J Phys Chem 76:3077–3085

    Article  CAS  Google Scholar 

  37. Tait MJ, Suggett A, Franks F, Ablett S, Quickenden PA (1972) J Solut Chem 1:131–138

    Article  CAS  Google Scholar 

  38. Tanford C (1968) Adv Protein Chem 23:121–282

    Article  CAS  Google Scholar 

  39. Timasheff SN, Xie G (2003) Biophys Chem 105:421–448

    Article  CAS  Google Scholar 

  40. Timasheff SN (2002) Protein-solvent preferential interactions protein hydration, and the modulation of biochemical reactions by solvent components. Proc Natl Acad Sci USA 99:9721–9726

    Article  CAS  Google Scholar 

  41. Timasheff SN, Arakawa T (1990) Stabilization of protein structure by solvents. In: Creighton TE (ed) Protein structure; a practical approach. IRL Press, Oxford, pp 1–24

    Google Scholar 

  42. Tsou CL (1995) Biochim Biophys Acta 1253:151–162

    Google Scholar 

  43. Uversky VN, Narizhneva NV, Kirschstein SO, Winter S, LoÈ ber G (1997) Folding Design 2:163

    Article  CAS  Google Scholar 

  44. Weatherly GT, Pielak GJ (2001) Prot Sci 10:12–16

    Article  CAS  Google Scholar 

  45. Wetlaufer DB, Malik SK, Stoller L, Coffin RL (1964) J Am Chem Soc 86:508–514

    Article  CAS  Google Scholar 

  46. Xie G, Timasheff SN (1997) Protein Sci 6:222–232

    CAS  Google Scholar 

  47. Xie G, Timasheff SN (1997) Biophys Chem 64:25–43

    Article  CAS  Google Scholar 

  48. Xie G, Timasheff SN (1997) Protein Sci 6:211–221

    Article  CAS  Google Scholar 

  49. Yancey PH, Somero GN (1979) Biochem J 183:317–333

    CAS  Google Scholar 

  50. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Science 217:1214–1222

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports of Islamic Azad University, Science and Research Branch and Omidieh Branch are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdol-Khalegh Bordbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saadati, Z., Bordbar, AK. Stability of β-Lactoglobulin A in the Presence of Sugar Osmolytes Estimated from Their Guanidinium Chloride-Induced Transition Curves. Protein J 27, 455–460 (2008). https://doi.org/10.1007/s10930-008-9156-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-008-9156-x

Keywords

Navigation