Skip to main content
Log in

Effect of pH and Glucose on the Stability of α-lactalbumin

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The objective of this study is to understand the influence of pH and effect of cosolvent (glucose) on the stabilization of bovine α-lactalbumin by using ultrasonic techniques. Values of density, ultrasonic velocity and viscosity were measured for bovine α-lactalbumin (5 mg/ml) dissolved in phosphate buffer (pH 2, 5, 7, 9 and 12) solutions mixed with and without the cosolvent at 30 °C. These measurements were used to calculate few thermo-acoustical parameters such as adiabatic compressibility, intermolecular free length, acoustic impedance, relaxation time, relative association constant, the partial apparent specific volume and the partial apparent specific adiabatic compressibility for the said systems. The obtained results revealed a strong comparison between the effects of acidic and alkaline pH values on protein denaturation, i.e., the acidic pH are instantaneous and are of less magnitude whereas alkaline pH are slower but sharper. Further the present study supports the fact that the presence of glucose stabilizes α-lactalbumin against denaturation due to pH variation, which may be due to the strengthening of non-covalent interactions and the steric exclusion effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Gekko, T. Morikawa, J. Biochem. (Tokyo) 90, 51–60 (1981)

    CAS  Google Scholar 

  2. T. S. Arakawa, S. N. Timasheff, Biochemistry 21, 6536–6544 (1982)

    Article  CAS  Google Scholar 

  3. N. Taulier, T. V. Chalikian, Biochim. Biophys. Acta 1595, 48–70 (2002)

    Article  CAS  Google Scholar 

  4. S. K. Swain, P. P. Priyadarshini, Indian J. Pure Appl Phys. 48, 539–542 (2010)

    CAS  Google Scholar 

  5. D. P. Kharakoz, Biophys. Chem. 34, 115–125 (1991)

    Article  Google Scholar 

  6. T. V. Chalikian, R. Filfil, Biophys. Chem. 104, 489–499 (2003)

    Article  CAS  Google Scholar 

  7. N. Taulier, I. V. Beletskaya, T. V. Chalikian, Biopolymers 79, 218–229 (2005)

    Article  CAS  Google Scholar 

  8. A. Awasthi, J. P. Shukla, Ultrasonics 41, 477–486 (2003)

    Article  CAS  Google Scholar 

  9. B. N. Waris, B. Bano, A. H. Abdul Raziq, Indian J. Biochem. Biophys. 40, 98–107 (2003)

    CAS  Google Scholar 

  10. E. D. Chrysina, K. Brew, K. R. Acharya, J. Biol. Chem. 275, 37021–37029 (2000)

    Article  CAS  Google Scholar 

  11. Y. Mine, Trends Food Sci. Technol. 6, 225–232 (1995)

    Article  CAS  Google Scholar 

  12. B. N. Waris, U. Hasan, N. Srivastava, Thermochim. Acta 375, 1–7 (2001)

    Article  CAS  Google Scholar 

  13. A. A. Green, J. Am. Chem. Soc. 55, 2331–2336 (1993)

    Article  Google Scholar 

  14. A. S. Antipova, M. G. Semenova, L. E. Belyakova, Colloids and Surf. B: Biointerfaces 12(261–270) (1999)

  15. P. J. Elving, J. M. Markowitz, I. Rosenthal, Anal. Chem. 28, 1179–1180 (1956)

    Article  CAS  Google Scholar 

  16. T. V. Chalikian, A. P. Sarvazyan, K. J. Breslauer, Biophys. Chem. 51, 89–109 (1994)

    Article  CAS  Google Scholar 

  17. D. P. Kharakoz, A. P. Sarvazyan, Biopolymers 33, 11–26 (1993)

    Article  CAS  Google Scholar 

  18. P. H. Robert, D. W. Green, J. O. Maloney, Perry’s Chemical Engineering Hand Book, 6th edn. (McGraw Hill, N. Y., 1997)

    Google Scholar 

  19. M. K. Campbell, S. O. Farrell, Biochemistry (Baba Barkah Nath Printers, Delhi, 2006)

    Google Scholar 

  20. L. Palaniappan, V. Velusamy, Indian J. Pure Appl. Phys. 42, 591–594 (2004)

    CAS  Google Scholar 

  21. V. Velusamy, S. Nithyanandham, L. Palaniappan, Main Group Chem. 6, 53–61 (2007)

    Article  CAS  Google Scholar 

  22. S. C. Bhatt, H. Semwal, V. Lingwal, K. Singh, B. S. Semwal, J. Acoust. Soc. India 28, 293–296 (2000)

    Google Scholar 

  23. S. Ravichandran, K. Ramanathan, Rasayan J. Chem. 3(2), 375–384 (2010)

    CAS  Google Scholar 

  24. N. El Kadi, N. Taulier, L. Huerou, M. Gindre, W. Urbach, I. Nwigwe, P. C. Kahn, M. Waks, Biophys. J. 91, 3397–3404 (2006)

    Article  Google Scholar 

  25. N. R. Cabilio, S. Omanovic, S. G. Roscoe, Langmuir 16, 8480–8488 (2000)

    Article  CAS  Google Scholar 

  26. M. J. Kronman, An overview. CRC Crit. Rev. Biochem. Mol. Biol. 24, 565–667 (1989)

    Article  CAS  Google Scholar 

  27. D. W. S. Wong, W. M. Camirand, A. E. Pavlath, Crit. Rev. Food Sci. Nutr. 36, 807–844 (1996)

    Article  CAS  Google Scholar 

  28. E. A. Permyakov, L. J. Berliner, FEBS Lett. 473, 269–274 (2000)

    Article  CAS  Google Scholar 

  29. S. N. Timasheff, Adv. Protein Chem. 51, 355–432 (1998)

    Article  CAS  Google Scholar 

  30. G. Akerlof, J. Am. Chem. Soc. 54, 4125–4139 (1932)

    Article  CAS  Google Scholar 

  31. S. Kim, Jean Baum. Protein Sci. 7, 1930–1938 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Palaniappan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velusamy, V., Palaniappan, L. Effect of pH and Glucose on the Stability of α-lactalbumin. Food Biophysics 11, 108–115 (2016). https://doi.org/10.1007/s11483-015-9423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-015-9423-2

Keywords

Navigation