Skip to main content

Advertisement

Log in

Five multivariate Duchenne muscular dystrophy progression models bridging six-minute walk distance and MRI relaxometry of leg muscles

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The study aimed to provide quantitative information on the utilization of MRI transverse relaxation time constant (MRI-T2) of leg muscles in DMD clinical trials by developing multivariate disease progression models of Duchenne muscular dystrophy (DMD) using 6-min walk distance (6MWD) and MRI-T2. Clinical data were collected from the prospective and longitudinal ImagingNMD study. Disease progression models were developed by a nonlinear mixed-effect modeling approach. Univariate models of 6MWD and MRI-T2 of five muscles were developed separately. Age at assessment was the time metric. Multivariate models were developed by estimating the correlation of 6MWD and MRI-T2 model variables. Full model estimation approach for covariate analysis and five-fold cross validation were conducted. Simulations were performed to compare the models and predict the covariate effects on the trajectories of 6MWD and MRI-T2. Sigmoid Imax and Emax models best captured the profiles of 6MWD and MRI-T2 over age. Steroid use, baseline 6MWD, and baseline MRI-T2 were significant covariates. The median age at which 6MWD is half of its maximum decrease in the five models was similar, while the median age at which MRI-T2 is half of its maximum increase varied depending on the type of muscle. The models connecting 6MWD and MRI-T2 successfully quantified how individual characteristics alter disease trajectories. The models demonstrate a plausible correlation between 6MWD and MRI-T2, supporting the use of MRI-T2. The developed models will guide drug developers in using the MRI-T2 to most efficient use in DMD clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

In accordance with our informed consent form, researchers will be required to apply for access to the data set by submitting the following information, which will be reviewed by an Executive Committee: (i) Researcher name(s) and institutional affiliation(s) and (ii) A brief proposal outlining how the data will be used. The request should be submitted to Dr. Krista Vandenborne, the Director of ImagingNMD (Email Contact: kvandenb@phhp.ufl.edu). If shared data are used in subsequent publications the original funding source (AR056973) and the ImagingNMD network will need to be acknowledged and published methodology developed during the course of the study cited, as appropriate. https://imagingnmd.org/data-sharing/.

References

  1. Gao QQ, McNally EM (2015) The dystrophin complex: structure, function, and implications for therapy. Compr Physiol 5(3):1223–1239. https://doi.org/10.1002/cphy.c140048

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928. https://doi.org/10.1016/0092-8674(87)90579-4

    Article  CAS  PubMed  Google Scholar 

  3. Salari N, Fatahi B, Valipour E et al (2022) Global prevalence of Duchenne and Becker muscular dystrophy: a systematic review and meta-analysis. J Orthop Surg Res 17(1):96. https://doi.org/10.1186/s13018-022-02996-8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Thomas S, Conway KM, Fapo O et al (2022) Time to diagnosis of Duchenne muscular dystrophy remains unchanged: findings from the muscular dystrophy surveillance, tracking, and research network, 2000–2015. Muscle Nerve 66(2):193–197. https://doi.org/10.1002/mus.27532

    Article  PubMed  PubMed Central  Google Scholar 

  5. Birnkrant DJ, Bushby K, Bann CM et al (2018) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 17(3):251–267. https://doi.org/10.1016/S1474-4422(18)30024-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. van Ruiten HJ, Straub V, Bushby K, Guglieri M (2014) Improving recognition of Duchenne muscular dystrophy: a retrospective case note review. Arch Dis Child 99(12):1074–1077. https://doi.org/10.1136/archdischild-2014-306366

    Article  PubMed  Google Scholar 

  7. Mendell JR, Lloyd-Puryear M (2013) Report of MDA muscle disease symposium on newborn screening for Duchenne muscular dystrophy. Muscle Nerve 48(1):21–26. https://doi.org/10.1002/mus.23810

    Article  PubMed  Google Scholar 

  8. Deng J, Zhang J, Shi K, Liu Z (2022) Drug development progress in Duchenne muscular dystrophy. Front Pharmacol 13:950651. https://doi.org/10.3389/fphar.2022.950651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sheikh O, Yokota T (2021) Developing DMD therapeutics: a review of the effectiveness of small molecules, stop-codon readthrough, dystrophin gene replacement, and exon-skipping therapies. Expert Opin Investig Drugs 30(2):167–176. https://doi.org/10.1080/13543784.2021.1868434

    Article  CAS  PubMed  Google Scholar 

  10. FDA grants accelerated approval to first drug for Duchenne muscular dystrophy. https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-first-drug-duchenne-muscular-dystrophy (FDA NEWS RELEASE, Content current as of: 29 Sept 2016)

  11. Shirley M (2021) Casimersen: first approval. Drugs 81(7):875–879. https://doi.org/10.1007/s40265-021-01512-2

    Article  CAS  PubMed  Google Scholar 

  12. Heo YA (2020) Golodirsen: first approval. Drugs 80(3):329–333. https://doi.org/10.1007/s40265-020-01267-2

    Article  PubMed  Google Scholar 

  13. Dhillon S (2020) Viltolarsen: first approval. Drugs 80(10):1027–1031. https://doi.org/10.1007/s40265-020-01339-3

    Article  CAS  PubMed  Google Scholar 

  14. Syed YY (2016) Eteplirsen: first global approval. Drugs 76(17):1699–1704. https://doi.org/10.1007/s40265-016-0657-1

    Article  CAS  PubMed  Google Scholar 

  15. Lin G AF, Otuonya I. Deflazacort, Eteplirsen, and Golodirsen for Duchenne Muscular Dystrophy: Effectiveness and Value-Evidence Report. 2019. Accessed 25 Apr 2023. https://icer.org/wp-content/uploads/2020/10/ICER_DMD-Final-Report_081519-2-1.pdf

  16. Angelini C, Peterle E (2012) Old and new therapeutic developments in steroid treatment in Duchenne muscular dystrophy. Acta Myol 31(1):9–15

    PubMed  PubMed Central  Google Scholar 

  17. Flanigan KM, Dunn DM, von Niederhausern A et al (2009) Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat 30(12):1657–1666. https://doi.org/10.1002/humu.21114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McDonald CM, Henricson EK, Abresch RT et al (2013) The 6-minute walk test and other clinical endpoints in duchenne muscular dystrophy: reliability, concurrent validity, and minimal clinically important differences from a multicenter study. Muscle Nerve 48(3):357–368. https://doi.org/10.1002/mus.23905

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ricotti V, Ridout DA, Pane M et al (2016) The NorthStar ambulatory assessment in Duchenne muscular dystrophy: considerations for the design of clinical trials. J Neurol Neurosurg Psychiatry 87(2):149–155. https://doi.org/10.1136/jnnp-2014-309405

    Article  PubMed  Google Scholar 

  20. Gloor M, Fasler S, Fischmann A et al (2011) Quantification of fat infiltration in oculopharyngeal muscular dystrophy: comparison of three MR imaging methods. J Magn Reson Imaging 33(1):203–210. https://doi.org/10.1002/jmri.22431

    Article  PubMed  Google Scholar 

  21. Kim HK, Laor T, Horn PS, Racadio JM, Wong B, Dardzinski BJ (2010) T2 mapping in Duchenne muscular dystrophy: distribution of disease activity and correlation with clinical assessments. Radiology 255(3):899–908. https://doi.org/10.1148/radiol.10091547

    Article  PubMed  Google Scholar 

  22. Gaeta M, Messina S, Mileto A et al (2012) Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments. Preliminary experience. Skeletal Radiol 41(8):955–961. https://doi.org/10.1007/s00256-011-1301-5

    Article  PubMed  Google Scholar 

  23. Torriani M, Townsend E, Thomas BJ, Bredella MA, Ghomi RH, Tseng BS (2012) Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study. Skeletal Radiol 41(4):437–445. https://doi.org/10.1007/s00256-011-1240-1

    Article  PubMed  Google Scholar 

  24. Arpan I, Forbes SC, Lott DJ et al (2013) T(2) mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5–15-year-old boys with Duchenne muscular dystrophy. NMR Biomed 26(3):320–328. https://doi.org/10.1002/nbm.2851

    Article  CAS  PubMed  Google Scholar 

  25. Willcocks RJ, Arpan IA, Forbes SC et al (2014) Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: effects of age and disease progression. Neuromuscul Disord 24(5):393–401. https://doi.org/10.1016/j.nmd.2013.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barnard AM, Willcocks RJ, Finanger EL et al (2018) Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne muscular dystrophy. PLoS ONE 13(3):e0194283. https://doi.org/10.1371/journal.pone.0194283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barnard AM, Willcocks RJ, Triplett WT et al (2020) MR biomarkers predict clinical function in Duchenne muscular dystrophy. Neurology 94(9):e897–e909. https://doi.org/10.1212/WNL.0000000000009012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim S, Willcocks RJ, Daniels MJ et al (2023) Multivariate modeling of magnetic resonance biomarkers and clinical outcome measures for Duchenne muscular dystrophy clinical trials. CPT Pharmacomet Syst Pharmacol 12(10):1437–1449. https://doi.org/10.1002/psp4.13021

    Article  CAS  Google Scholar 

  29. Morales JF, Muse R, Podichetty JT et al (2023) Disease progression joint model predicts time to type 1 diabetes onset: optimizing future type 1 diabetes prevention studies. CPT Pharmacomet Syst Pharmacol 12(7):1016–1028. https://doi.org/10.1002/psp4.12973

    Article  CAS  Google Scholar 

  30. Lingineni K, Aggarwal V, Morales JF et al (2022) Development of a model-based clinical trial simulation platform to optimize the design of clinical trials for Duchenne muscular dystrophy. CPT Pharmacomet Syst Pharmacol 11(3):318–332. https://doi.org/10.1002/psp4.12753

    Article  CAS  Google Scholar 

  31. Ahn JE, Karlsson MO, Dunne A, Ludden TM (2008) Likelihood based approaches to handling data below the quantification limit using NONMEM VI. J Pharmacokinet Pharmacodyn 35(4):401–421. https://doi.org/10.1007/s10928-008-9094-4

    Article  PubMed  Google Scholar 

  32. Bergstrand M, Karlsson MO (2009) Handling data below the limit of quantification in mixed effect models. AAPS J 11(2):371–380. https://doi.org/10.1208/s12248-009-9112-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mazzone E, Vasco G, Sormani MP et al (2011) Functional changes in Duchenne muscular dystrophy: a 12-month longitudinal cohort study. Neurology 77(3):250–256. https://doi.org/10.1212/WNL.0b013e318225ab2e

    Article  CAS  PubMed  Google Scholar 

  34. Barnard AM, Hammers DW, Triplett WT et al (2022) Evaluating genetic modifiers of Duchenne Muscular dystrophy disease progression using modeling and MRI. Neurology 99(21):e2406–e2416. https://doi.org/10.1212/wnl.0000000000201163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rooney WD, Berlow YA, Triplett WT et al (2020) Modeling disease trajectory in Duchenne muscular dystrophy. Neurology 94(15):e1622–e1633. https://doi.org/10.1212/wnl.0000000000009244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Emery AE (2002) The muscular dystrophies. Lancet 359(9307):687–695. https://doi.org/10.1016/S0140-6736(02)07815-7

    Article  CAS  PubMed  Google Scholar 

  37. Arpan I, Willcocks RJ, Forbes SC et al (2014) Examination of effects of corticosteroids on skeletal muscles of boys with DMD using MRI and MRS. Neurology 83(11):974–980. https://doi.org/10.1212/wnl.0000000000000775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Dommelen P, van Dijk O, de Wilde JA, Verkerk PH (2020) Early developmental milestones in Duchenne muscular dystrophy. Dev Med Child Neurol 62(10):1198–1204. https://doi.org/10.1111/dmcn.14623

    Article  PubMed  Google Scholar 

  39. Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10(2):290–301. https://doi.org/10.1093/jxb/10.2.290

    Article  Google Scholar 

  40. Pienaar LV, Turnbull KJ (1973) The Chapman-Richards generalization of Von Bertalanffy’s growth model for basal area growth and yield in even—aged stands. For Sci 19(1):2–22. https://doi.org/10.1093/forestscience/19.1.2

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the DMD MR Biomarker Steering Committee members for their feedback that helped improve the study.

Funding

Research reported in this publication was supported by the NIH National Center for Advancing Translational Sciences through grant number R21TR004006, National Institute of Arthritis and Musculoskeletal and Skin Diseases and National Heart Lung and Blood Institute through grant number R01AR056973, and the University of Florida Clinical and Translational Science Institute, which is also supported in part by the NIH National Center for Advancing Translational Sciences under award number UL1TR001427. All data were collected as part of ImagingNMD program supported by NIH grant R01AR056973. Data acquisition and storage at OHSU were supported by shared instrument grants NIH S10OD021701 and NIH S10OD018224. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

DY, MJD, RJW, GAW, WDR, KV, and SK wrote manuscript, MJD, RJW, WDR, KV, and SK designed research, DY, RJW, WTT, JM, and SK performed research, DY, MJD, RJW, WTT, JM, GAW, WDR, KV, and SK analyzed data, and DY, RJW, WTT, JM, and SK contributed new reagents/analytical tools.

Corresponding author

Correspondence to Sarah Kim.

Ethics declarations

Conflict of interests

The authors declared no competing interests for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13921 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, D.Y., Daniels, M.J., Willcocks, R.J. et al. Five multivariate Duchenne muscular dystrophy progression models bridging six-minute walk distance and MRI relaxometry of leg muscles. J Pharmacokinet Pharmacodyn (2024). https://doi.org/10.1007/s10928-024-09910-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10928-024-09910-1

Keywords

Navigation