Skip to main content

Advertisement

Log in

A next generation mathematical model for the in vitro to clinical translation of T-cell engagers

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

T-cell engager (TCE) molecules activate the immune system and direct it to kill tumor cells. The key mechanism of action of TCEs is to crosslink CD3 on T cells and tumor associated antigens (TAAs) on tumor cells. The formation of this trimolecular complex (i.e. trimer) mimics the immune synapse, leading to therapeutic-dependent T-cell activation and killing of tumor cells. Computational models supporting TCE development must predict trimer formation accurately. Here, we present a next-generation two-step binding mathematical model for TCEs to describe trimer formation. Specifically, we propose to model the second binding step with trans-avidity and as a two-dimensional (2D) process where the reactants are modeled as the cell-surface density. Compared to the 3D binding model where the reactants are described in terms of concentration, the 2D model predicts less sensitivity of trimer formation to varying cell densities, which better matches changes in EC50 from in vitro cytotoxicity assay data with varying E:T ratios. In addition, when translating in vitro cytotoxicity data to predict in vivo active clinical dose for blinatumomab, the choice of model leads to a notable difference in dose prediction. The dose predicted by the 2D model aligns better with the approved clinical dose and the prediction is robust under variations in the in vitro to in vivo translation assumptions. In conclusion, the 2D model with trans-avidity to describe trimer formation is an improved approach for TCEs and is likely to produce more accurate predictions to support TCE development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arvedson T, Bailis JM, Britten CD, Klinger M, Nagorsen D, Coxon A et al (2022) Targeting solid tumors with bispecific T cell engager immune therapy. Annu Rev Cancer Biol 6:17–34

    Article  Google Scholar 

  2. Baeuerle PA, Reinhardt C (2009) Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res 69:4941–4944

    Article  CAS  PubMed  Google Scholar 

  3. Saber H, Del Valle P, Ricks TK, Leighton JK (2017) An FDA oncology analysis of CD3 bispecific constructs and first-in-human dose selection. Regul Toxicol Pharmacol 90:144–152

    Article  CAS  PubMed  Google Scholar 

  4. Sun LL, Ellerman D, Mathieu M, Hristopoulos M, Chen X, Li Y et al (2015) Anti-CD20/CD3 T cell–dependent bispecific antibody for the treatment of B cell malignancies. Sci Transl Med. 7:287

    Article  Google Scholar 

  5. Betts A, Haddish-Berhane N, Shah DK, van der Graaf PH, Barletta F, King L et al (2019) A translational quantitative systems pharmacology model for CD3 bispecific molecules: application to quantify T cell-mediated tumor cell killing by P-cadherin LP DART®. AAPS J 21:66

    Article  PubMed  Google Scholar 

  6. Betts A, van der Graaf PH (2020) Mechanistic quantitative pharmacology strategies for the early clinical development of bispecific antibodies in oncology. Clin Pharmacol Ther. https://doi.org/10.1002/cpt.1961

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li L, Gardner I, Gill K. Modeling the binding kinetics of bispecific antibodies under the framework of a minimal human PBPK model. AAPS NBC Poster. certara.com; 2014. Available: https://www.certara.com/poster/modeling-the-binding-kinetics-of-bispecific-antibodies-under-the-framework-of-a-minimal-human-pbpk-model-2/

  8. Schropp J, Khot A, Shah DK, Koch G (2019) Target-mediated drug disposition model for bispecific antibodies: properties, approximation, and optimal dosing strategy. CPT Pharmacometr Syst Pharmacol 8:177–187

    Article  CAS  Google Scholar 

  9. Yoneyama T, Kim M-S, Piatkov K, Wang H, Zhu AZX (2022) Leveraging a physiologically-based quantitative translational modeling platform for designing B cell maturation antigen-targeting bispecific T cell engagers for treatment of multiple myeloma. PLoS Comput Biol 18:e1009715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang X, Chen X, Carpenter TJ, Wang J, Zhou R, Davis HM et al (2018) Development of a Target cell-Biologics-Effector cell (TBE) complex-based cell killing model to characterize target cell depletion by T cell redirecting bispecific agents. MAbs 10:876–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Campagne O, Delmas A, Fouliard S, Chenel M, Chichili GR, Li H et al (2018) Integrated pharmacokinetic/pharmacodynamic model of a bispecific CD3xCD123 DART molecule in nonhuman primates: evaluation of activity and impact of immunogenicity. Clin Cancer Res 24:2631–2641

    Article  CAS  PubMed  Google Scholar 

  12. Ma H, Wang H, Sove RJ, Jafarnejad M, Tsai C-H, Wang J et al (2020) A quantitative systems pharmacology model of T cell engager applied to solid tumor. AAPS J 22:85

    Article  CAS  PubMed  Google Scholar 

  13. Kaufman EN, Jain RK (1992) Effect of bivalent interaction upon apparent antibody affinity: experimental confirmation of theory using fluorescence photobleaching and implications for antibody binding assays. Cancer Res 52:4157–4167

    CAS  PubMed  Google Scholar 

  14. Erlendsson S, Teilum K (2020) Binding revisited-avidity in cellular function and signaling. Front Mol Biosci 7:615565

    Article  CAS  PubMed  Google Scholar 

  15. Harms BD, Kearns JD, Iadevaia S, Lugovskoy AA (2014) Understanding the role of cross-arm binding efficiency in the activity of monoclonal and multispecific therapeutic antibodies. Methods 65:95–104

    Article  CAS  PubMed  Google Scholar 

  16. Labrecque N, Whitfield LS, Obst R, Waltzinger C, Benoist C, Mathis D (2001) How much TCR does a T cell need? Immunity 15:71–82

    Article  CAS  PubMed  Google Scholar 

  17. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17: 261–272.

  18. Hoffmann P, Hofmeister R, Brischwein K, Brandl C, Crommer S, Bargou R et al (2005) Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer 115:98–104

    Article  CAS  PubMed  Google Scholar 

  19. Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55:271–280

    Article  Google Scholar 

  20. Herman J, Usher W (2017) SALib: an open-source Python library for Sensitivity Analysis. J Open Source Softw 2:97

    Article  Google Scholar 

  21. Iwanaga T, Usher W, Herman J (2022) Toward SALib 2.0: Advancing the accessibility and interpretability of global sensitivity analyses. Socio-Environ Syst Model 4:18155

    Google Scholar 

  22. Saltelli A (2002) Making best use of model evaluations to compute sensitivity indices. Comput Phys Commun 145:280–297

    Article  CAS  Google Scholar 

  23. Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F et al (2002) Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 100:690–697

    Article  CAS  PubMed  Google Scholar 

  24. Rohatgi A. Webplotdigitizer: Version 4.5. 2021. https://automeris.io/WebPlotDigitizer

  25. Kuchimanchi M, Zhu M, Clements JD, Doshi S (2019) Exposure-response analysis of blinatumomab in patients with relapsed/refractory acute lymphoblastic leukaemia and comparison with standard of care chemotherapy. Br J Clin Pharmacol 85:807–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iversen PO, Berggreen E, Nicolaysen G, Heyeraas K (2001) Regulation of extracellular volume and interstitial fluid pressure in rat bone marrow. Am J Physiol Heart Circ Physiol 280:H1807–H1813

    Article  CAS  PubMed  Google Scholar 

  27. Li Z, Krippendorff B-F, Sharma S, Walz AC, Lavé T, Shah DK (2016) Influence of molecular size on tissue distribution of antibody fragments. MAbs 8:113–119

    Article  CAS  PubMed  Google Scholar 

  28. Blincyto [package insert]. Thousand Oaks, California: Amgen Inc.; 2017.

  29. Trinklein ND, Pham D, Schellenberger U, Buelow B, Boudreau A, Choudhry P et al (2019) Efficient tumor killing and minimal cytokine release with novel T-cell agonist bispecific antibodies. MAbs 11:639–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fooksman DR, Vardhana S, Vasiliver-Shamis G, Liese J, Blair DA, Waite J et al (2010) Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol 28:79–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yeung YA, Krishnamoorthy V, Dettling D, Sommer C, Poulsen K, Ni I et al (2020) An optimized fulllLength FLT3/CD3 bispecific antibody demonstrates potent anti-leukemia activity and reversible hematological toxicity. Mol Ther 28:889–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Friedrich M, Henn A, Raum T, Bajtus M, Matthes K, Hendrich L et al (2014) Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia. Mol Cancer Ther 13:1549–1557

    Article  CAS  PubMed  Google Scholar 

  33. Verkleij CPM, Broekmans MEC, van Duin M, Frerichs KA, Kuiper R, de Jonge AV et al (2021) Preclinical activity and determinants of response of the GPRC5DxCD3 bispecific antibody talquetamab in multiple myeloma. Blood Adv 5:2196–2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank many colleagues at Applied BioMath who have contributed to the discussion of this work, including Victor Chang, Marc Presler, Saheli Sakar, Fereshteh Nazari. We would also like to thank Sarah A. Head and Max Nowak for performing the literature search for parameter values.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the work and interpretation of results. DF and DB prepared all figures. DF, DB, GK, AΒ and FH wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Fei Hua.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1807 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flowers, D., Bassen, D., Kapitanov, G.I. et al. A next generation mathematical model for the in vitro to clinical translation of T-cell engagers. J Pharmacokinet Pharmacodyn 50, 215–227 (2023). https://doi.org/10.1007/s10928-023-09846-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-023-09846-y

Keywords

Navigation