Skip to main content
Log in

Computing optimal drug dosing with OptiDose: implementation in NONMEM

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Determining a drug dosing recommendation with a PKPD model can be a laborious and complex task. Recently, an optimal dosing algorithm (OptiDose) was developed to compute the optimal doses for any pharmacometrics/PKPD model for a given dosing scenario. In the present work, we reformulate the underlying optimal control problem and elaborate how to solve it with standard commands in the software NONMEM. To demonstrate the potential of the OptiDose implementation in NONMEM, four relevant but substantially different optimal dosing tasks are solved. In addition, the impact of different dosing scenarios as well as the choice of the therapeutic goal on the computed optimal doses are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gonzalez D, Rao GG, Bailey SC, Brouwer KLR, Cao Y, Crona DJ, Kashuba ADM, Lee CR, Morbitzer K, Patterson JH, Wiltshire T, Easter J, Savage SW, Powell JR (2017) Precision dosing: public health need, proposed framework, and anticipated impact. Clin Transl Sci 10(6):443–454

    Article  PubMed  PubMed Central  Google Scholar 

  2. Koch G, Datta AN, Jost K, Schulzke SM, van den Anker J, Pfister M (2017) Caffeine citrate dosing adjustments to assure stable caffeine concentrations in preterm neonates. J Pediatr 191:50-56.e1

    Article  CAS  PubMed  Google Scholar 

  3. Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints. Mathematical modelling: theory and applications. Springer, Dordrecht

  4. Pontryagin LS (1987) Mathematical theory of optimal processes. Classics in Soviet mathematics. CRC Press, Boca Raton

  5. Moore H (2018) How to mathematically optimize drug regimens using optimal control. J Pharmacokinet Pharmacodyn 45:127–137

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kirschner D, Lenhart S, Serbin S (1997) Optimal control of the chemotherapy of HIV. J Math Biol 35(7):775–92

    Article  CAS  PubMed  Google Scholar 

  7. Joshi HR (2002) Optimal control of an HIV immunology model. Opt Control Appl Methods 23(4):199–213

    Article  Google Scholar 

  8. Schättler H, Ledzewicz U (2015) Optimal control for mathematics of cancer therapies. Springer, New York

    Book  Google Scholar 

  9. Ledzewicz U, Maurer H, Schättler H (2019) Optimal combined radio- and anti-angiogenic cancer therapy. J Optim Theory Appl 180(1):321–340

    Article  Google Scholar 

  10. Sharp JA, Browning AP, Mapder T, Burrage K, Simpson MJ (2019) Optimal control of acute myeloid leukaemia. J Theor Biol 470:30–42

    Article  PubMed  Google Scholar 

  11. Choi W, Shim E (2020) Optimal strategies for social distancing and testing to control COVID-19. J Theor Biol 512:110568

    Article  PubMed  PubMed Central  Google Scholar 

  12. Neilan RLM, Schaefer E, Gaff H, Fister KR, Lenhart S (2010) Modeling optimal intervention strategies for cholera. Bull Math Biol 72(8):2004–2018

    Article  Google Scholar 

  13. Miyaoka TY, Lenhart S, Meyer JFCA (2019) Optimal control of vaccination in a vector-borne reaction-diffusion model applied to zika virus. J Math Biol 79(3):1077–1104

  14. Gontijo AVL, Cavalieri AVG (2021) Optimal control for colistin dosage selection. J Pharmacokinet Pharmacodyn 48(6):803–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bachmann F, Koch G, Pfister M, Szinnai G, Schropp J (2021) OptiDose: computing the individualized optimal drug dosing regimen using optimal control. J Optim Theory Appl 189:46-65

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bachmann F, Koch G, Pfister M, Szinnai G, Schropp J (2022) A sensitivity analysis of the optimal drug dosing algorithm OptiDose. Pure Appl. Funct. Anal. 7(4):1127–1140

    Google Scholar 

  17. Beal SL, Sheiner LB, Boeckmann AJ, Bauer RJ (eds) NONMEM 7.5.1 users guides (1989–2022). ICON plc, Gaithersburg. https://nonmem.iconplc.com/nonmem751

  18. Jönsson S, Karlsson MO (2003) A rational approach for selection of optimal covariate-based dosing strategies. Clin Pharmacol Therap 73:7–19

    Article  Google Scholar 

  19. Dayneka NL, Garg V, Jusko WJ (1993) Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 21(4):457–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koch G, Schropp J (2018) Delayed indirect response models: realization of oscillating behaviour. J Pharmacokinet Pharmacodyn 45(1):49–58

    Article  PubMed  Google Scholar 

  21. Schropp J, Khot A, Dhaval SK, Koch G (2019) Target-mediated drug disposition model for bispecific antibodies: properties, approximation, and optimal dosing scenario. CPT Pharmacom Syst Pharmacol 8(3):177–187

    Article  CAS  Google Scholar 

  22. Koch G, Wagner T, Plater-Zyberg C, Lahu G, Schropp J (2012) Multi-response model for rheumatic arthritis based on delay differential equations in collagen-induced arthritic mice treated with an anti-GM-CSF antibody. J Pharmacokinet Pharmacodyn 39(1):55–65

    Article  CAS  PubMed  Google Scholar 

  23. Koch G, Krzyzanski W, Perez-Ruixo JJ, Schropp J (2014) Modeling of delays in PKPD: classical approaches and a tutorial for delay differential equations. J Pharmacokinet Pharmacodyn 41(4):291–318

    Article  PubMed  Google Scholar 

  24. Yan X, Bauer R, Koch G, Schropp J, Perez-Ruixo JJ, Krzyzanski W (2021) Delay differential equations based models in NONMEM. J Pharmacokinet Pharmacodyn 48:763–802

    Article  PubMed  Google Scholar 

  25. Release MATLAB (2020) The MathWorks. Inc, MathWorks, Natick

    Google Scholar 

  26. van Donge T, Samiee-Zafarghandy S, Pfister M, Koch G, Kalani M, Bordbar A, van den Anker J (2019) Methadone dosing strategies in preterm neonates can be simplified. Br J Clin Pharmacol 85(6):1348–1356

    Article  PubMed  PubMed Central  Google Scholar 

  27. Samiee-Zafarghandy S, van Donge T, Fusch G, Pfister M, Jacob G, Atkinson A, Rieder MJ, Smit C, Van Den Anker J (2022) Novel strategy to personalise use of ibuprofen for closure of patent ductus arteriosus in preterm neonates. Arch Dis Child 107(1):86–91

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Koch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was supported by a Grant awarded to GK from the Swiss National Science Foundation; Grant No. 179510. This work has been supported by the DFG, project no. SCHR 692/3-1 (Germany).

Appendices

Appendix 1

Schematic overview on how to implement OptiDose in NONMEM

figure h

Appendix 2

Biomarker Indirect Response Model. The data file biomarker.dat for dosing scenario A, B, C with IV bolus administration

figure i

Appendix 3

Biomarker Indirect Response Model, dosing scenario A with quadratic or linear reference function. The control file biomarker.ctl

figure j

Appendix 4

Biomarker Indirect Response Model. The data file biomarkerinf.dat for dosing scenario A with IV infusion administration

figure k

Appendix 5

Biomarker Indirect Response Model, dosing scenario A with IV infusion. The control file biomarkerinf.ctl

figure l

Appendix 6

Biomarker Indirect Response Model, dosing scenario B and C. The control file biomarker2.ctl

figure m

Appendix 7

Bispecific Antibody Example. The data file antibody.dat

figure n

Appendix 8

Bispecific Antibody Example. The control file antibody.ctl

figure o

Appendix 9

Target AUC Example. The data file auc.dat

figure p

Appendix 10

Target AUC Example. The control file auc.ctl

figure q

Appendix 11

Rheumatic Arthritis DDE Example. The data file ra.dat

figure r

Appendix 12

Rheumatoid Arthritis DDE Example. The control file ra.ctl

figure s

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachmann, F., Koch, G., Bauer, R.J. et al. Computing optimal drug dosing with OptiDose: implementation in NONMEM. J Pharmacokinet Pharmacodyn 50, 173–188 (2023). https://doi.org/10.1007/s10928-022-09840-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-022-09840-w

Keywords

Navigation