Skip to main content

Advertisement

Log in

Solution and implementation of distributed lifespan models

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

We consider a population where every individual has a unique lifespan. After expiring of its lifespan the individual has to leave the population. A realistic approach to describe these lifespans is by a continuous distribution. Such distributed lifespan models (DLSMs) were introduced earlier in the indirect response context and consist of the mathematical convolution operator to describe the rate of change. Therefore, DLSMs could not directly be implemented in standard PKPD software. In this work we present the solution representation of DLSMs with and without a precursor population and an implementation strategy for DLSMs in ADAPT , NONMEM and MATLAB . We fit hemoglobin measurements from literature and investigate computational properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krzyzanski W, Woo S, Jusko WJ (2006) Pharmacodynamic models for agents that alter production of natural cells with various distributions of lifespans. J Pharmacokinet Pharmacodyn 33(2):125–166

    Article  PubMed  CAS  Google Scholar 

  2. Freise K, Widness J, Schmidt R, Veng-Pedersen P (2008) Modeling time variant distributions of cellular lifespans: increases in circulating reticulocyte lifespans following double phlebotomies in sheep. J Pharmacokinet Pharmacodyn 35(3):285–323

    Article  PubMed  Google Scholar 

  3. Ramakrishnan R, Cheung WK, Wacholtz MC, Minton N, Jusko WJ (2004) Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after single and multiple doses in healthy volunteers. J Clin Pharmacol 44:991–1002

    Article  PubMed  CAS  Google Scholar 

  4. Ait-Oudhia S, Scherrmann JM, Krzyzanski W (2010) Simultaneous pharmacokinetics/pharmacodynamics modeling of recombinant human erythropoietin upon multiple intravenous dosing in rats. J Pharmacol Exp Ther 334:897–910

    Article  PubMed  CAS  Google Scholar 

  5. D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los Angeles

    Google Scholar 

  6. Beal S, Sheiner LB, Boeckmann A, Bauer RJ (2009) NONMEM user’s guides. Icon Development Solutions, Ellicott City

    Google Scholar 

  7. MATLAB Release (2012) The MathWorks, Inc., Natick

  8. Nichols B, Shrestha RP, Horowitz J, Hollot CV, Germain MJ, Gaweda AE, Chait Y (2011) Simplification of an erythropoiesis model for design of anemia management protocols in end stage renal disease. In: 33rd Annual international conference of the IEEE EMBS Boston, Massachusetts, USA

  9. Atkinson K (1989) An introduction to numerical analysis, 2nd edn. Wiley, New York

    Google Scholar 

  10. Thomas GB, Finney RL (1996) Calculus and analytic geometry, 9th edn. Addison-Wesley, Reading

    Google Scholar 

  11. Marshall AW, Olkin I (2007) Life distributions. Springer, New York

    Google Scholar 

  12. Bebbinton M, Lai CD, Zitikis R (2007) Modeling human mortality using mixtures of bathtub shaped failure distributions. J Theor Biol 245(3):528–538

    Article  Google Scholar 

  13. Korell J, Coulter CV, Duffull SB (2011) A statistical model for red blood cell survival. J Theor Biol 268(1):39–49

    Article  PubMed  Google Scholar 

  14. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77, the art of scientific computing, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  15. Krzyzanski W (2011) Interpretation of transit compartments pharmacodynamic models as lifespan based indirect response models. J Pharmacokinet Pharmacodyn 38(2):179–204

    Article  PubMed  Google Scholar 

  16. Koch G, Schropp J (2012) General relationship between transit compartments and lifespan models. J Pharmacokinet Pharmacodyn 39(4):343–355

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present project is supported by the National Research Fund, Luxembourg, and cofunded under the Marie Curie Actions of the European Commission (FP7-COFUND).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Koch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ZIP (53 KB)

ZIP (23 KB)

ZIP (53 KB)

Appendices

Appendices

Appendix 1

To estimate the amount of individuals at the initial population state N(0) for the DLSM (5), (6) we define the production term

$$ \widetilde{k_{in}}(t) =\left\{ \begin{array}{ll} k_{in}(t) & t \leq 0, \\ 0 & t > 0. \end{array}\right. $$
(24)

Then the appropriate initial value N(0) is determined by the claim \(\lim \nolimits_{t \rightarrow \infty} N(t) = 0.\) Substituting (24) into (5) results in

$$ \frac{d}{dt} N(t) = \widetilde{k_{in}}(t) - \int \limits_0^\infty \widetilde{k_{in}}(t-x) l_N(x) dx . $$
(25)

The general solution of (25) reads

$$ \begin{aligned} N(t) &= N(0) + \int \limits_0^t \widetilde{k_{in}}(s)ds - \int \limits_0^t \int \limits_0^\infty \widetilde{k_{in}}(s-x) l_N(x) dx ds \\ &= N(0) - \int \limits_0^\infty l_N(x) \int \limits_0^t \widetilde{k_{in}}(s-x) ds dx. \end{aligned} $$

Then

$$ \begin{aligned} \lim \limits_{t \rightarrow \infty} N(t) &= 0 \\ \Leftrightarrow N(0) &= \int \limits_0^\infty l_N(x) \int \limits_0^\infty \widetilde{k_{in}}(s-x) ds dx. \end{aligned} $$

Using (24)

$$ \begin{aligned} N(0) &= \int \limits_0^\infty l_N(x) \int \limits_0^x k_{in}(s-x) ds dx \\ &= \int \limits_0^\infty l_N(x) \int \limits_{-x}^0 k_{in}(s) ds dx . \end{aligned} $$

Appendix 2

We consider a constant past k in (t) = \(k_{in}^{0}\) for t ≤ 0 and obtain for the initial values

$$ \begin{aligned} N(0) &= \int \limits_0^\infty l_N(x) \int \limits_{-x}^0 k_{in}^0 ds dx \\ &= k_{in}^0 \int \limits_0^\infty l_N(x) x dx = k_{in}^0 T_N, \end{aligned} $$

and

$$ \begin{aligned} M(0) &= \int \limits_0^\infty l_M(y) \int \limits_{-y}^0 \left(k_{in}^0*l_N\right)(s) ds dy \\ &= \int \limits_0^\infty l_M(y) \int \limits_{-y}^0 k_{in}^0 \int \limits_0^\infty l_N(x) dx ds dy \\ &= \int \limits_0^\infty l_M(y) \int \limits_{-y}^0 k_{in}^0 ds dy = k^0_{in} T_M. \end{aligned} $$

Appendix 3

To estimate the amount M(0) of the follow-up population for the DPLSM (7), (8) a similar approach as in Appendix 1 is applied. We define the production

$$ \widetilde{k_{in}}(t) =\left\{ \begin{array}{ll} \left(k_{in}*l \right)(t) & t \leq 0, \\ 0 & t > 0, \end{array}\right. $$
(26)

and use the condition \(\lim \nolimits_{t \rightarrow \infty} M(t) = 0\) to determine M(0). Substituting (26) into (7) results in

$$ \begin{aligned} M(t) &= M(0) + \int \limits_0^t \widetilde{k_{in}}(s) ds - \int \limits_0^t \int \limits_0^\infty \widetilde{k_{in}}(s-y)l_M(y) dy ds \\ &= M(0) - \int \limits_0^\infty l_M(y) \int \limits_0^t \widetilde{k_{in}}(s-y) ds dy, \end{aligned} $$

and therefore,

$$ \begin{aligned} M(0) & = \int \limits_0^\infty l_M(y) \int \limits_0^\infty \widetilde{k_{in}}(s-y) ds dy \\ &=\int \limits_0^\infty l_M(y) \int \limits_{-y}^0 \left(k_{in}*l_N\right)(s) ds dy. \end{aligned} $$
(27)

Appendix 4

Differentiation of (10) with respect to time t gives

$$ \begin{aligned} \frac{d}{dt}N(t) &= \int \limits_0^\infty \left(1-L_N(s)\right) k'_{in}(t-s) ds \\ &= \left[ -\left(1-L_N(s)\right) k_{in}(t-s) \right]_{s=0}^{s=\infty} \\ &\quad - \int \limits_0^\infty \left(-l_N(s)\right) \left(-k_{in}(t-s)\right) ds \\ &= k_{in}(t) - \int \limits_0^\infty l_N(s) k_{in}(t-s) ds \\ &= k_{in}(t)-\left(k_{in}*l_N\right)(t). \end{aligned} $$

With (10) we obtain for the initial value

$$ \begin{aligned} N(0) &= \int \limits_0^\infty \left(1-L_N(s)\right) k_{in}(-s) ds \\ &= \left[ \left( 1-L_N(s) \right) \int \limits_0^s k_{in}(-x) dx \right]_{s=0}^{s=\infty} \\ & \quad - \int \limits_0^\infty \left(-l_N(s)\right) \int \limits_0^s k_{in}(-x) dx ds \\ &= \int \limits_0^\infty l_N(s) \int \limits_{-s}^0 k_{in}(x) dx ds. \end{aligned} $$

Appendix 5

Generally, for an arbitrary continuous function f, the trapezoidal rule reads

$$ \int \limits_{\tau_0}^{\tau_{end}} f(s) ds \approx \frac{h}{2} \sum \limits_{i=1}^m \left(f\left(s_{i+1}\right)+ f\left(s_i\right)\right), $$
(28)

with the equidistant partition s j  = τ 0 + (j − 1)h with \(h = \frac{\tau_{end}-\tau_0}{m}\) for j = 1,…,m + 1 of the lifespan interval [τ 0, τ end ].

Appendix 6

Differentiation of (13) with respect to time t gives

$$ \begin{aligned} \frac{d}{dt} M(t) &= \int \limits_0^\infty \left(1-L_M(x)\right) \int \limits_0^\infty k_{in}^{'}(t-x-s) l_N(s) ds dx \\ &= \int \limits_0^\infty l_N(s) \int \limits_0^\infty \left(1-L_M(x) \right) k_{in}^{'}(t-x-s) dx ds. \end{aligned} $$
(29)

The inner integral in (29) could be written as

$$ \begin{aligned} &\int \limits_0^{\infty} \left(1-L_M(x)\right){k}_{in}^{'}(t-x-s) dx \\ &= \left[-\left(1-L_M(x)\right)k_{in}(t-x-s)\right]_{x=0}^{x=\infty} \\ & \quad - \int\limits_0^{\infty} k_{in}(t-x-s) l_M(x) dx \end{aligned} $$
(30)
$$ = k_{in}(t-s) - \int \limits_0^\infty k_{in}(t-x-s) l_M(x) dx. $$
(31)

Substitution of (31) into (29) gives

$$ \begin{aligned} \frac{d}{dt} M(t) &= \int \limits_0^\infty l_N(s) k_{in}(t-s) ds \\ & \quad - \int \limits_0^\infty l_N(s) \int \limits_0^\infty k_{in}(t-x-s) l_M(x) dx ds \\ &= \left(k_{in} * l_N \right)(t) - \int \limits_0^\infty l_N(s) \left(\left(k_{in}*l_M\right)(t-s)\right) ds \\ &= \left(k_{in} * l_N \right)(t) - \left( k_{in}*l_N*l_M \right) (t). \end{aligned} $$

For the initial value we obtain

$$ \begin{aligned} M(0) &= \int \limits_0^\infty \left(1-L_M(x)\right) \int \limits_0^\infty k_{in}(-x-s) l_N(s) ds dx \\ &= \left[ \left(1-L_M(x)\right) \int \limits_0^x \int \limits_0^\infty k_{in}(-y-s) l_N(s) ds dy \right]_{x=0}^{x=\infty}\\ &\quad + \int \limits_0^\infty l_M(x) \int \limits_0^x \int \limits_0^\infty k_{in}(-y-s) l_N(s) ds dy dx \\ &= \int \limits_0^\infty l_M(x) \int \limits_0^x\left( k_{in}*l_N \right) (-y) dy dx \\ &= \int \limits_0^\infty l_M(x) \int \limits_{-x}^0 \left( k_{in}*l_N\right)(y) dy dx. \end{aligned} $$

Appendix 7

In the following we present the implementation of the trapezoidal rule for (10). Only additional functions and modified ADAPT subroutines are presented. For the complete code see the supplemental material.

Logarithm of the gamma function \(\Gamma(x)\) based on [14]: CDF L(x) of the WBD: Multiple dosing function for c(t): Production k in (t): Integrand in (10): Trapezoidal rule: The ADAPT subroutine OUTPUT calls the trapezoidal rule for the different dosing groups.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, G., Schropp, J. Solution and implementation of distributed lifespan models. J Pharmacokinet Pharmacodyn 40, 639–650 (2013). https://doi.org/10.1007/s10928-013-9336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-013-9336-y

Keywords

Navigation