Skip to main content
Log in

Biocompatible Cellulose-Based Superabsorbents for Personal Care Products

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Personal care products are an inseparable part of urban society, but the widespread use of petroleum-based superabsorbent polymers (SAPs) poses significant environmental negative impact. To overcome this problem, we investigated the development of cellulose-based hydrogels through di-epoxide chemical crosslinking of cellulose/cellulose electrolytes in NaOH/Urea aqueous system. The aim was to exploit mechanical strength, hydrophilicity, non-toxicity, and biodegradability of cellulose as the absorbent core of personal hygiene products through a simple synthesis method. The synthesized cellulose materials significantly improved the absorption capacity of the gels by 220%, reaching up to 41 g/g. The absorption properties were influenced by the cellulose DS, crosslinking density, and fluid salinity. The hydrogels demonstrated a remarkable absorption capacity of synthetic urine (27 g/g) and underload conditions (12 g/g). Their non-cytotoxic and biodegradable nature showed their potential for the manufacturing of personal care products such as disposable diapers or daily pads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The authors confirm that supporting information is available within the article.

References

  1. Carlucci G (2012) New technologies for feminine hygiene products with reduced environmental impact. In: WIT Transactions on Ecology and the Environment. pp 597–606

  2. Bashari A, Rouhani Shirvan A, Shakeri M (2018) Cellulose-based hydrogels for personal care products. Polym Adv Technol 29:2853–2867. https://doi.org/10.1002/pat.4290

    Article  CAS  Google Scholar 

  3. Haque MO, Mondal MIH (2018) In: Mondal MIH (ed) Cellulose-based hydrogel for Personal Hygiene Applications BT - Cellulose-based superabsorbent hydrogels. Springer International Publishing, Cham, pp 1–21

    Google Scholar 

  4. Peng N, Wang Y, Ye Q et al (2016) Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity. Carbohydr Polym 137:59–64. https://doi.org/10.1016/j.carbpol.2015.10.057

    Article  CAS  PubMed  Google Scholar 

  5. Bhaladhare S, Das D (2022) Cellulose: a fascinating biopolymer for hydrogel synthesis. J Mater Chem B 10:1923–1945. https://doi.org/10.1039/D1TB02848K

    Article  CAS  PubMed  Google Scholar 

  6. Qureshi MA, Nishat N, Jadoun S, Ansari MZ (2020) Polysaccharide based superabsorbent hydrogels and their methods of synthesis: a review. Carbohydr Polym Technol Appl. https://doi.org/10.1016/j.carpta.2020.100014. 1:100014

    Article  Google Scholar 

  7. Patiño-Masó J, Serra-Parareda F, Tarrés Q et al (2019) TEMPO-Oxidized cellulose nanofibers: a potential bio-based superabsorbent for diaper production. Nanomaterials 9:1271. https://doi.org/10.3390/nano9091271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luckachan GE, Pillai CKS (2011) Biodegradable Polymers- A review on recent trends and emerging perspectives. J Polym Environ 19:637–676. https://doi.org/10.1007/s10924-011-0317-1

    Article  CAS  Google Scholar 

  9. Kundu R, Mahada P, Chhirang B, Das B (2022) Cellulose hydrogels: Green and sustainable soft biomaterials. Curr Res Green Sustain Chem 5:100252. https://doi.org/10.1016/j.crgsc.2021.100252

    Article  CAS  Google Scholar 

  10. Qiao D, Yu L, Bao X et al (2017) Understanding the microstructure and absorption rate of starch-based superabsorbent polymers prepared under high starch concentration. Carbohydr Polym 175:141–148. https://doi.org/10.1016/j.carbpol.2017.07.071

    Article  CAS  PubMed  Google Scholar 

  11. Yu C, Yun-fei L, Huan-lin T, Hui-min T (2010) Study of carboxymethyl chitosan based polyampholyte superabsorbent polymer I: optimization of synthesis conditions and pH sensitive property study of carboxymethyl chitosan-g-poly(acrylic acid-co-dimethyldiallylammonium chloride) superabsorbent polymer. Carbohydr Polym 81:365–371. https://doi.org/10.1016/j.carbpol.2010.02.007

    Article  CAS  Google Scholar 

  12. Luo M-T, Huang C, Li H-L et al (2019) Bacterial cellulose based superabsorbent production: a promising example for high value-added utilization of clay and biology resources. Carbohydr Polym 208:421–430. https://doi.org/10.1016/j.carbpol.2018.12.084

    Article  CAS  PubMed  Google Scholar 

  13. Schurz J (1999) A bright future for cellulose. Prog Polym Sci 24:481–483. https://doi.org/10.1016/S0079-6700(99)00011-8

    Article  CAS  Google Scholar 

  14. Chang C, Zhang L (2011) Cellulose-based hydrogels: Present status and application prospects. Carbohydr Polym 84:40–53. https://doi.org/10.1016/j.carbpol.2010.12.023

    Article  CAS  Google Scholar 

  15. Biswas MC, Jony B, Nandy PK et al (2022) Recent Advancement of biopolymers and their potential Biomedical Applications. J Polym Environ 30:51–74. https://doi.org/10.1007/s10924-021-02199-y

    Article  CAS  Google Scholar 

  16. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Mater (Basel) 2:353–373. https://doi.org/10.3390/ma2020353

    Article  CAS  Google Scholar 

  17. Djafari Petroudy SR, Ranjbar J, Rasooly Garmaroody E (2018) Eco-friendly superabsorbent polymers based on carboxymethyl cellulose strengthened by TEMPO-mediated oxidation wheat straw cellulose nanofiber. Carbohydr Polym 197:565–575. https://doi.org/10.1016/j.carbpol.2018.06.008

    Article  CAS  PubMed  Google Scholar 

  18. Nair GRCRR, Menon SV D (2020) Superabsorbent sodium carboxymethyl cellulose membranes based on a new cross-linker combination for female sanitary napkin applications. Carbohydr Polym 248:116763. https://doi.org/10.1016/j.carbpol.2020.116763

    Article  CAS  PubMed  Google Scholar 

  19. Onwukamike KN, Grelier S, Grau E et al (2019) Critical review on sustainable homogeneous cellulose modification: why renewability is not enough. ACS Sustain Chem Eng 7:1826–1840. https://doi.org/10.1021/acssuschemeng.8b04990

    Article  CAS  Google Scholar 

  20. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548. https://doi.org/10.1002/mabi.200400222

    Article  CAS  PubMed  Google Scholar 

  21. Zhou J, Zhang L (2000) Solubility of cellulose in NaOH/Urea aqueous solution. Polym J 32:866–870. https://doi.org/10.1295/polymj.32.866

    Article  CAS  Google Scholar 

  22. Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/Urea aqueous solution. Biomacromolecules 7:183–189. https://doi.org/10.1021/bm0505585

    Article  CAS  PubMed  Google Scholar 

  23. Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787. https://doi.org/10.1007/s10570-008-9230-8

    Article  CAS  Google Scholar 

  24. Almeida RO, Ramos A, Alves L et al (2021) Production of nanocellulose gels and films from invasive tree species. Int J Biol Macromol 188:1003–1011. https://doi.org/10.1016/j.ijbiomac.2021.08.015

    Article  CAS  PubMed  Google Scholar 

  25. Lourenço AF, Gamelas JAF, Nunes T et al (2017) Influence of TEMPO-oxidised cellulose nanofibrils on the properties of filler-containing papers. Cellulose 24:349–362. https://doi.org/10.1007/s10570-016-1121-9

    Article  CAS  Google Scholar 

  26. Song Y, Zhou J, Zhang L, Wu X (2008) Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions. Carbohydr Polym 73:18–25. https://doi.org/10.1016/j.carbpol.2007.10.018

    Article  CAS  Google Scholar 

  27. Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599. https://doi.org/10.1016/j.compscitech.2011.07.003

    Article  CAS  Google Scholar 

  28. Parajuli P, Acharya S, Shamshina JL, Abidi N (2021) Tuning the morphological properties of cellulose aerogels: an investigation of salt-mediated preparation. Cellulose 28:7559–7577. https://doi.org/10.1007/s10570-021-04028-w

    Article  CAS  Google Scholar 

  29. Tabernero A, Baldino L, Misol A et al (2020) Role of rheological properties on physical chitosan aerogels obtained by supercritical drying. Carbohydr Polym 233:115850. https://doi.org/10.1016/j.carbpol.2020.115850

    Article  CAS  PubMed  Google Scholar 

  30. Rebelo RC, Ribeiro DCM, Pereira P et al (2023) Cellulose-based films with internal plasticization with epoxidized soybean oil. Cellulose 30:1823–1840. https://doi.org/10.1007/s10570-022-04997-6

    Article  CAS  Google Scholar 

  31. Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yadav S, Illa MP, Rastogi T, Sharma CS (2016) High absorbency cellulose acetate electrospun nanofibers for feminine hygiene application. Appl Mater Today 4:62–70. https://doi.org/10.1016/j.apmt.2016.07.002

    Article  Google Scholar 

  33. Frazier LM (2006) Superabsorbent Nanofiber Matrices. University of Akron, Doctoral dissertation

  34. Adjuik TA, Nokes SE, Montross MD (2023) Biodegradability of bio-based and synthetic hydrogels as sustainable soil amendments: a review. J Appl Polym Sci 140:e53655. https://doi.org/10.1002/app.53655

    Article  CAS  Google Scholar 

  35. Cui X, Lee JJL, Chen WN (2019) Eco-friendly and biodegradable cellulose hydrogels produced from low cost okara: towards non-toxic flexible electronics. Sci Rep 9:18166. https://doi.org/10.1038/s41598-019-54638-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu H, Wang A, Xu X et al (2016) Porous aerogels prepared by crosslinking of cellulose with 1,4-butanediol diglycidyl ether in NaOH/urea solution. RSC Adv 6:42854–42862. https://doi.org/10.1039/C6RA07464B

    Article  CAS  Google Scholar 

  37. Chang C, Zhang L, Zhou J et al (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127. https://doi.org/10.1016/j.carbpol.2010.04.033

    Article  CAS  Google Scholar 

  38. Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from Unsubstituted Cellulose in NaOH/Urea aqueous solution. Macromol Biosci 7:804–809. https://doi.org/10.1002/mabi.200700007

    Article  CAS  PubMed  Google Scholar 

  39. Jeong CH, Kim DH, Yune JH et al (2021) In vitro toxicity assessment of crosslinking agents used in hyaluronic acid dermal filler. Toxicol Vitr 70:105034. https://doi.org/10.1016/j.tiv.2020.105034

    Article  CAS  Google Scholar 

  40. De Boulle K, Glogau R, Kono T et al (2013) A review of the metabolism of 1,4-Butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers. Dermatol Surg 39

  41. Tong R, Chen G, Pan D et al (2019) Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors. Biomacromolecules 20:2096–2104. https://doi.org/10.1021/acs.biomac.9b00322

    Article  CAS  PubMed  Google Scholar 

  42. Ribeiro DCM, Rebelo RC, De Bon F et al (2021) Process development for flexible films of Industrial Cellulose Pulp using superbase ionic liquids. Polym (Basel) 13. https://doi.org/10.3390/polym13111767

  43. Bang S, Das D, Yu J, Noh I (2017) Evaluation of MC3T3 cells proliferation and drug release study from Sodium Hyaluronate-1,4-butanediol Diglycidyl Ether Patterned Gel. Nanomaterials 7

  44. Kim Y, Jeong D, Park KH et al (2018) Efficient adsorption on Benzoyl and Stearoyl Cellulose to remove Phenanthrene and Pyrene from Aqueous Solution. Polym (Basel). 10

  45. Zheng L, He W, Zhu K et al (2018) Investigation of poly (1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole. Electrochim Acta 283:560–567. https://doi.org/10.1016/j.electacta.2018.06.132

    Article  CAS  Google Scholar 

  46. Spagnol C, Rodrigues FHA, Pereira AGB et al (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19:1225–1237. https://doi.org/10.1007/s10570-012-9711-7

    Article  CAS  Google Scholar 

  47. Lavoine N, Bergström L (2017) Nanocellulose-based foams and aerogels: processing, properties, and applications. J Mater Chem A 5:16105–16117. https://doi.org/10.1039/C7TA02807E

    Article  CAS  Google Scholar 

  48. Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19:401–410. https://doi.org/10.1007/s10570-011-9629-5

    Article  CAS  Google Scholar 

  49. Srirachya N, Boonkerd K, Kobayashi T (2019) Effective elongation properties of cellulose–natural rubber composite hydrogels having interconnected domain. J Elastomers Plast 52:337–355. https://doi.org/10.1177/0095244319849699

    Article  CAS  Google Scholar 

  50. Rana RH, Rana MS, Tasnim S et al (2022) Characterization and tableting properties of microcrystalline cellulose derived from waste paper via hydrothermal method. J Appl Pharm Sci 12:140–147. https://doi.org/10.7324/JAPS.2022.120613

    Article  CAS  Google Scholar 

  51. Contributors P (2011) Pharmahub. https://pharmahub.org/wiki/?version=. Accessed 15 Sep 2023

  52. Paula CTB, Rebelo RC, Coelho J, Serra AC (2019) The impact of the introduction of hydrolyzed cellulose on the thermal and mechanical properties of LDPE composites. Eur J Wood Wood Prod 77:1095–1106. https://doi.org/10.1007/s00107-019-01457-0

    Article  CAS  Google Scholar 

  53. Duchemin BJC, Staiger MP, Tucker N, Newman RH (2010) Aerocellulose based on all-cellulose composites. J Appl Polym Sci 115:216–221. https://doi.org/10.1002/app.31111

    Article  CAS  Google Scholar 

  54. Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose – NaOH. Aqueous Solutions Biomacromolecules 9:269–277. https://doi.org/10.1021/bm700972k

    Article  CAS  PubMed  Google Scholar 

  55. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  56. Yao W, Weng Y, Catchmark JM (2020) Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27:5563–5579. https://doi.org/10.1007/s10570-020-03177-8

    Article  CAS  Google Scholar 

  57. Udoetok IA, Wilson LD, Headley JV (2018) Ultra-sonication assisted cross-linking of cellulose polymers. Ultrason Sonochem 42:567–576. https://doi.org/10.1016/j.ultsonch.2017.12.017

    Article  CAS  PubMed  Google Scholar 

  58. Trivedi MK, Patil S, Mishra R, Jana S (2016) Characterization of thermal and physical properties of Biofield treated Acrylamide and 2-Chloroacetamide. Org Chem Curr Res 4:2–7. https://doi.org/10.4172/2161-0401.1000143

    Article  CAS  Google Scholar 

  59. Giacomozzi DE, Joutsimo O (2015) Drying temperature and hornification of industrial never-dried Pinus radiata pulps. 1. Strength, optical, and water holding properties. BioResources 10:5791–5808. https://doi.org/10.15376/biores.10.3.5791-5808

    Article  CAS  Google Scholar 

  60. Beaumont M, König J, Opietnik M et al (2017) Drying of a cellulose II gel: effect of physical modification and redispersibility in water. Cellulose 24:1199–1209. https://doi.org/10.1007/s10570-016-1166-9

    Article  CAS  Google Scholar 

  61. Salmén L, Stevanic JS (2018) Effect of drying conditions on cellulose microfibril aggregation and hornification. Cellulose 25:6333–6344. https://doi.org/10.1007/s10570-018-2039-1

    Article  CAS  Google Scholar 

  62. Bachra Y, Grouli A, Damiri F et al (2020) A new approach for assessing the absorption of disposable baby diapers and superabsorbent polymers: a comparative study. Results Mater 8:100156. https://doi.org/10.1016/j.rinma.2020.100156

    Article  Google Scholar 

  63. Chyzy A, Tomczykowa M, Plonska-Brzezinska ME (2020) Hydrogels as Potential Nano-, Micro- and Macro-Scale Systems for Controlled Drug Delivery. Materials (Basel). 13

  64. Lin C-C, Anseth KS (2009) PEG hydrogels for the controlled release of Biomolecules in Regenerative Medicine. Pharm Res 26:631–643. https://doi.org/10.1007/s11095-008-9801-2

    Article  CAS  PubMed  Google Scholar 

  65. Teli MD, Mallick A (2018) Utilization of Waste Sorghum Grain for Producing Superabsorbent for Personal Care products. J Polym Environ 26:1393–1404. https://doi.org/10.1007/s10924-017-1044-z

    Article  CAS  Google Scholar 

  66. Mittal H, Mishra SB, Mishra AK et al (2013) Preparation of poly(acrylamide-co-acrylic acid)-grafted gum and its flocculation and biodegradation studies. Carbohydr Polym 98:397–404. https://doi.org/10.1016/j.carbpol.2013.06.026

    Article  CAS  PubMed  Google Scholar 

  67. Joshi SJ, Abed RMM (2017) Biodegradation of Polyacrylamide and its derivatives. Environ Process 4:463–476. https://doi.org/10.1007/s40710-017-0224-0

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by FEDER through the program COMPETE – Programa Operacional Factores de Competitividade, FCT – Fundação para a Ciência e Tecnologia, CEMMPRE (UID/EMS/00285/2020) and ARISE (LA/P/0112/2020). NMR data was collected at the UC-NMR facility which is supported in part by FEDER through the COMPETE Programme and by FCT – Fundação para a Ciência e a Tecnologia through grants REEQ/481/QUI/2006-RECI/QEQ-QFI/0168/2012, CENTRO-07-CT62-FEDER-002012, and Rede Nacional de Ressonância Magnética Nuclear (RNRRMN). Authors acknowledge Ricardo Almeida for intrinsic viscosity measurement. Rafael C. Rebelo acknowledges to FCT for the funding of his research degree grant 2021.08025.BD, Blanca V. Báguena to mobility program Erasmus+ for the financial support of her mission at University of Coimbra and Rui Moreira to FEDER for the financial support of his postdoc fellowship within the scope of the HIGH2RPAPER-POCI-01-0247-FEDER-049716 research project.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this manuscript contributed to development of this work. R.C.R.: conceptualization, data curation, formal analysis, methodology, validation, investigation, writing original and writing review & editing. B.V.B. and P.P.: data curation, formal analysis, investigation, and writing original. R.M.: conceptualization, data curation, formal analysis, methodology, validation, investigation and writing review & editing. J.F.J.C: resources, writing review & editing, project administration and funding acquisition. A.C.S.: supervision, resources, writing-review & editing, project administration and funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Rafael C. Rebelo or Rui Moreira.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebelo, R.C., Báguena, B.V., Pereira, P. et al. Biocompatible Cellulose-Based Superabsorbents for Personal Care Products. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03315-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03315-4

Keywords

Navigation