Skip to main content
Log in

Immobilized Deep Eutectic Solvent ChCl–2ZnCl2@ZIF-8 Composite as an Efficient and Reusable Catalyst for the Methanolysis of Poly(lactic Acid)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA), as a biodegradable plastic, is considered a potential alternative to alleviate the environmental problems caused by the accumulation of petroleum-based plastic wastes. However, PLA is relatively expensive and naturally degrades very slowly. Therefore, compared to disposal, recycling PLA is more conducive to sustainable development. In this study, a novel immobilized deep eutectic solvent (DES) ChCl–2ZnCl2@ZIF-8 was developed and used for the methanolysis of PLA to produce a valuable product methyl lactate (ML). The synthesized heterogeneous catalyst exhibits excellent thermal and chemical stability, as well as excellent catalytic performance. For example, the reaction temperature significantly decreased, the dosage of the catalyst decreased, and the PLA conversion and the ML yield were both improved, reaching 98.2% and 96.3%. After the reaction, the catalyst can be recovered through simple filtration, and reused for five times with negligible loss of catalytic activity. The catalyst was characterized by FT-IR, SEM, BET, TGA and XRD. Based on the experimental results, a possible reaction mechanism of PLA methanolysis was proposed. In addition, the kinetics of the PLA methanolysis catalyzed by ChCl–2ZnCl2@ZIF-8 was examined and the activation energy was obtained. This work mainly provided a way of recovering catalysts and promoted the development of PLA methanolysis into ML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kakanuru P, Pochiraju K (2020) Addit Manuf 36:101529

    CAS  Google Scholar 

  2. Hamad K, Kaseem M, Ayyoob M, Joo J, Deri F (2018) Prog Polym Sci 85:83–127

    Article  CAS  Google Scholar 

  3. Swetha TA, Bora A, Mohanrasu K, Balaji P, Raja R, Ponnuchamy K, Muthusamy G, Arun A (2023) Int J Biol Macromol 234:123715

    Article  CAS  PubMed  Google Scholar 

  4. Shen H, Li Y, Yao W, Yang S, Yang L, Pan F, Chen Z, Yin X (2021) Compos B Eng 222:109042

    Article  CAS  Google Scholar 

  5. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H (2016) Adv Drug Deliver Rev 107:163–175

    Article  CAS  Google Scholar 

  6. Ferreira RTL, Amatte IC, Dutra TA, Bürger D (2017) Compos B Eng 124:88–100

    Article  CAS  Google Scholar 

  7. Li Y, Lin Z, Wang X, Duan Z, Lu P, Li S, Ji D, Wang Z, Li G, Yu D, Liu W (2021) Sep Purif Technol 270:118794

    Article  CAS  Google Scholar 

  8. He Y, Fang C, Xu WH, Tan LC, Qin S, Yin XC, Feng YH, Park CB, Qu JP (2023) Chem Eng J 457:141371

    Article  CAS  Google Scholar 

  9. Beltrán FR, Infante C, de la Orden MU, Martínez Urreaga J (2019) J Clean Prod 219:46–56

    Article  Google Scholar 

  10. Vasile C, Pamfil D, Rapa M, Darie-Nita RN, Mitelut AC, Popa EE, Popescu PA, Draghici MC, Popa ME (2018) Compos Part B-Eng 142:251–262

    Article  CAS  Google Scholar 

  11. Santulli F, Lamberti M, Mazzeo M (2021) Chemsuschem 14:5470–5475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elsawy MA, Kim KH, Park JW, Deep A (2017) Renew Sust Energ Rev 79:1346–1352

    Article  CAS  Google Scholar 

  13. Song X, Bian Z, Hui Y, Wang H, Liu F, Yu S (2019) Polym Degrad Stab 168:108937

    Article  CAS  Google Scholar 

  14. Yan YF, Liang XB, Feng YL, Shi LF, Chen RP, Guo JZ, Guan Y (2023) Carbohydr Polym 320:121251

    Article  CAS  PubMed  Google Scholar 

  15. Lin HY, Tsai SY, Yu HT, Lin CP (2017) J Polym Environ 26:122–131

    Article  Google Scholar 

  16. Karimi-Avargani M, Bazooyar F, Biria D, Zamani A, Skrifvars M (2021) Chemosphere 278:130443

    Article  CAS  PubMed  Google Scholar 

  17. Xie S, Sun Z, Liu T, Zhang J, Li T, Ouyang X, Qiu X, Luo S, Fan W, Lin H (2021) J Catal 402:61–71

    Article  CAS  Google Scholar 

  18. Leibfarth FA, Moreno N, Hawker AP, Shand JD (2012) J Polym Sci Part A: Polym Chem 50:4814–4822

    Article  CAS  Google Scholar 

  19. Alberti C, Damps N, Meißner RRR, Enthaler S (2019) ChemistrySelect 4:6845–6848

    Article  CAS  Google Scholar 

  20. Song XY, Zhang XJ, Wang H, Liu FS, Yu ST, Liu SW (2013) Polym Degrad Stab 98:2760–2764

    Article  CAS  Google Scholar 

  21. Song X, Wang H, Zheng X, Liu F, Yu S (2014) J Appl Polym Sci 131:40817

    Article  Google Scholar 

  22. Liu HQ, Zhao RY, Song XY, Liu FS, Yu ST, Liu SW, Ge XP (2017) Catal Lett 147:2298–2305

    Article  CAS  Google Scholar 

  23. Agostinho B, Silvestre AJD, Sousa AF (2022) Green Chem 24:3115–3119

    Article  CAS  Google Scholar 

  24. Kaur H, Singh M, Singh H, Kaur M, Singh G, Sekar K, Kang TS (2022) Green Chem 24:2953–2961

    Article  CAS  Google Scholar 

  25. Ribeiro BD, Florindo C, Iff LC, Coelho MAZ, Marrucho IM (2015) ACS Sustain Chem Eng 3:2469–2477

    Article  CAS  Google Scholar 

  26. Płotka-Wasylka J, de la Guardia M, Andruch V, Vilková M (2020) Microchem J 159:105539

    Article  Google Scholar 

  27. Yuan Y, Wang J, Liu H, Li Z (2023) J Mater Chem A 11:24127–24135

    Article  CAS  Google Scholar 

  28. Wan M, Zhang X, Li M, Chen B, Yin J, Jin H, Lin L, Chen C, Zhang N (2017) Small 13:1701395

    Article  Google Scholar 

  29. Hao L, Stoian SA, Weddle LR, Zhang Q (2020) Green Chem 22:6351–6356

    Article  CAS  Google Scholar 

  30. Wang R, Lu K, Zhang J, Li X, Zheng Z (2022) ACS Catal 12:14290–14303

    Article  CAS  Google Scholar 

  31. Bohigues B, Rojas-Buzo S, Moliner M, Corma A (2021) ACS Sustain Chem Eng 9:15793–15806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zanon A, Verpoort F (2017) Coord Chem Rev 353:201–222

    Article  CAS  Google Scholar 

  33. Lin L, Liu H, Zhang X (2017) Chem Eng J 328:124–132

    Article  CAS  Google Scholar 

  34. Wang Q, Zhang X, Huang L, Zhang Z, Dong S (2017) Angew Chem Int Ed 56:16082–16085

    Article  CAS  Google Scholar 

  35. Wang R, Wang T, Yu G, Chen X (2021) Polym Degrad Stab 183:109463

    Article  CAS  Google Scholar 

  36. Hoop M, Walde CF, Riccò R, Mushtaq F, Terzopoulou A, Chen X-Z, deMello AJ, Doonan CJ, Falcaro P, Nelson BJ, Puigmartí-Luis J, Pané S (2018) Appl Mater Today 11:13–21

    Article  Google Scholar 

  37. Mohammadi A, Nakhaei Pour A (2023) J CO2 Util 69:102424

    Article  CAS  Google Scholar 

  38. Liu F, Guo J, Zhao P, Gu Y, Gao J, Liu M (2019) Polym Degrad Stab 167:124–129

    Article  CAS  Google Scholar 

  39. Wang Q, Yao X, Tang S, Lu X, Zhang X, Zhang S (2012) Green Chem 14:2559–2566

    Article  CAS  Google Scholar 

  40. Al-Sabagh AM, Yehia FZ, Eissa AMF, Moustafa ME, Eshaq G, Rabie AM, ElMetwally AE (2014) Polym Degrad Stab 110:364–377

    Article  CAS  Google Scholar 

  41. Huang W, Wang H, Zhu X, Yang D, Yu S, Liu F, Song X (2021). Appl Clay Sci. https://doi.org/10.1016/j.clay.2021.105986

    Article  Google Scholar 

  42. Wang Y, Yang R, Xu G, Guo X, Dong B, Zhang Q, Li R, Wang Q (2023) Polym Degrad Stab 214:110413

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (No. 22271170 and 22178191).

Funding

National Natural Science Foundation of China (Grant Nos. 22271170, 22178191).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoxu Zhu and Huimin Zhao were responsible for the experimental operation and data analysis together, and Xiaoxu Zhu also wrote the main manuscript text. Hui Wang provided the experimental plan, while Daoshan Yang and Fusheng Liu provided funding. Xiuyan Song reviewed the project and provided laboratory resources. All authors provided review and supervision.

Corresponding author

Correspondence to Xiuyan Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zhao, H., Wang, H. et al. Immobilized Deep Eutectic Solvent ChCl–2ZnCl2@ZIF-8 Composite as an Efficient and Reusable Catalyst for the Methanolysis of Poly(lactic Acid). J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03302-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03302-9

Keywords

Navigation