Skip to main content
Log in

A novel deep eutectic solvent–mediated Fenton-like system for pretreatment of water hyacinth and biobutanol production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

To facilitate depolymerization of cellulose into fermentable sugars, a novel deep eutectic solvent (DES)–mediated Fenton-like system was developed for efficient removal of hemicellulose and lignin components from lignocellulosic biomass. Water hyacinth (WH) was treated with the newly synthesized DES (choline chloride-ethylene glycol-FeCl3; ChCl-EG-FeCl3) at 140 °C for 2 h and then subjected to treatment with 32 mL 30 wt% H2O2 (Fe3+: H2O2 = 1:50 mol·mol–1) for 1 h in a Fenton-like reaction system (DES/H2O2). Hydrolysate containing 28 g·L–1 glucose was obtained, which was 19.6- and 1.6-fold of raw WH and WH pretreated by DES, respectively. The DES/H2O2-WH hydrolysate was further evaluated for butanol fermentation; no significant inhibition was observed on butanol production, giving butanol titer of 8.3 g·L–1, along with a yield of 0.18 g·g–1 glucose and a productivity of 0.12 g·L–1·h–1. Remarkably, DES could be recovered and recycled for five consecutive batches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang Q, Chen Y (2010) Barriers and opportunities of using the clean development mechanism to advance renewable energy development in China. Renew Sust Energ Rev 14:1989–1998. https://doi.org/10.1016/j.rser.2010.03.023

    Article  CAS  Google Scholar 

  2. Kricka W, Fitzpatrick J, Bond U (2015) Challenges for the production of bioethanol from biomass using recombinant yeasts. Adv Appl Microbiol 92:89–125. https://doi.org/10.1016/bs.aambs.2015.02.003

    Article  CAS  PubMed  Google Scholar 

  3. Ibrahim MF, Kim SW, Abd-Aziz S (2018) Advanced bioprocessing strategies for biobutanol production from biomass. Renew Sust Energ Rev 91:1192–1204. https://doi.org/10.1016/j.rser.2018.04.060

    Article  CAS  Google Scholar 

  4. Rezania S, Ponraj M, Din MFM et al (2015) The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: an overview. Renew Sust Energ Rev 41:943–954. https://doi.org/10.1016/j.rser.2014.09.006

    Article  Google Scholar 

  5. Gaurav GK, Mehmood T, Cheng L et al (2020) Water hyacinth as a biomass: a review. J Clean Prod 277:122214. https://doi.org/10.1016/j.jclepro.2020.122214

    Article  CAS  Google Scholar 

  6. Li FH, He X, Srishti A et al (2021) Water hyacinth for energy and environmental applications: a review. Bioresour Technol 327:124809. https://doi.org/10.1016/j.biortech.2021.124809

    Article  CAS  PubMed  Google Scholar 

  7. Abdelhamid AM, Solbiati JO, Cann IKO (2013) Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 82:1–28. https://doi.org/10.1016/B978-0-12-407679-2.00001-6

    Article  CAS  PubMed  Google Scholar 

  8. He YC, Ding Y, Xue YF et al (2015) Enhancement of enzymatic saccharification of corn stover with sequential Fenton pretreatment and dilute NaOH extraction. Bioresour Technol 193:324–330. https://doi.org/10.1016/j.biortech.2015.06.088

    Article  CAS  PubMed  Google Scholar 

  9. Sankaran R, Cruz RAP, Pakalapati H et al (2019) Recent advances in the pretreatment of microalgal and lignocellulosic biomass: a comprehensive review. Bioresour Technol 298:122476. https://doi.org/10.1016/j.biortech.2019.122476

    Article  CAS  PubMed  Google Scholar 

  10. An S, Li W, Liu Q et al (2017) A two-stage pretreatment using acidic dioxane followed by dilute hydrochloric acid on sugar production from corn stover. RSC Adv 7:32452–32460. https://doi.org/10.1039/C7RA05280D

    Article  CAS  Google Scholar 

  11. Kim SM, Dien BS, Tumbleson ME et al (2016) Improvement of sugar yields from corn stover using sequential hot water pretreatment and disk milling. Bioresour Technol 216:706–713. https://doi.org/10.1016/j.biortech.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  12. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. https://doi.org/10.1021/cr300162p

    Article  CAS  PubMed  Google Scholar 

  13. Xu GC, Ding JC, Han RZ et al (2016) Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour Technol 203:364–369. https://doi.org/10.1016/j.biortech.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  14. Van ODJ, Kollau LJ, Van DBA et al (2017) Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Phys Chem Chem Phys 19:2636–2665. https://doi.org/10.1039/C6CP07499E

    Article  CAS  Google Scholar 

  15. Niawanti H, Zullaikah S, Rachimoellah M (2017) Purification of biodiesel by choline chloride based deep eutectic solvent. AIP Conf Proc 1840:050006. https://doi.org/10.1063/1.4982280

    Article  CAS  Google Scholar 

  16. Loow YL, Wu TY, Yang GH et al (2018) Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery. Bioresour Technol 249:818–825. https://doi.org/10.1016/j.biortech.2017.07.165

    Article  CAS  PubMed  Google Scholar 

  17. Lee CBTL, Wu TY, Ting CH et al (2019) One-pot furfural production using choline chloride-dicarboxylic acid based deep eutectic solvents under mild conditions. Bioresour Technol 278:486–489. https://doi.org/10.1016/j.biortech.2018.12.034

    Article  CAS  PubMed  Google Scholar 

  18. Tan YT, Ngoh GC, Chua ASM (2019) Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin. Bioresour Technol 281:359–366. https://doi.org/10.1016/j.biortech.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  19. Lin XQ, Liu Y, Zheng XJ et al (2021) High-efficient cellulosic butanol production from deep eutectic solvent pretreated corn stover without detoxification. Ind Crop Prod 162:113258. https://doi.org/10.1016/j.indcrop.2021.113258

    Article  CAS  Google Scholar 

  20. Lin WQ, Xing S, Jin YC et al (2020) Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. Bioresour Technol 306:123163. https://doi.org/10.1016/j.biortech.2020.123163

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Zheng XJ, Tao SH et al (2021) Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation. Renew Energ 177:259–267. https://doi.org/10.1016/j.renene.2021.05.131

    Article  CAS  Google Scholar 

  22. Lu WD, Alam MA, Pan Y et al (2016) A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. Bioresour Technol 218:123–128. https://doi.org/10.1016/j.biortech.2016.05.120

    Article  CAS  PubMed  Google Scholar 

  23. Jablonsky M, Haz A, Majova V (2019) Assessing the opportunities for applying deep eutectic solvents for fractionation of beech wood and wheat straw. Cellulose 26:7675–7684. https://doi.org/10.1007/s10570-019-02629-0

    Article  CAS  Google Scholar 

  24. Chen Z, Bai XL, Lusi A et al (2018) High-solid lignocellulose processing enabled by natural deep eutectic solvent for lignin extraction and industrially relevant production of renewable chemicals. ACS Sustain Chem Eng 6:12205–12216. https://doi.org/10.1021/acssuschemeng.8b02541

    Article  CAS  Google Scholar 

  25. Li CC, Huang CX, Zhao Y et al (2021) Effect of choline-based deep eutectic solvent pretreatment on the structure of cellulose and lignin in bagasse. Processes 9:384. https://doi.org/10.3390/pr9020384

    Article  CAS  Google Scholar 

  26. Wu M, Zhao DH, Pang JH et al (2015) Separation and characterization of lignin obtained by catalytic hydrothermal pretreatment of cotton stalk. Ind Crop Prod 66:123–130. https://doi.org/10.1016/j.indcrop.2014.12.056

    Article  CAS  Google Scholar 

  27. Amarasekara AS, Deng F (2019) Single reagent treatment and degradation of switchgrass using iron(III) chloride: the effects on hemicellulose, cellulose and lignin. Biomass Bioenerg 131:105421. https://doi.org/10.1016/j.biombioe.2019.105421

    Article  CAS  Google Scholar 

  28. Xin DL, Hu EL, Zhang JH et al (2021) Efficient deconstruction of Chinese silvergrass by FeCl3-catalyzed γ-valerolactone/water system under mild reaction condition. Ind Crop Prod 165:113405. https://doi.org/10.1016/j.indcrop.2021.113405

    Article  CAS  Google Scholar 

  29. Zhang C, Ma CY, Xu LH et al (2021) The effects of mild Lewis acids-catalyzed ethanol pretreatment on the structural variations of lignin and cellulose conversion in balsa wood. Int J Biol Macromol 183:1362–1370. https://doi.org/10.1016/j.ijbiomac.2021.05.091

    Article  CAS  PubMed  Google Scholar 

  30. Wang ZK, Li HY, Lin XC et al (2020) Novel recyclable deep eutectic solvent boost biomass pretreatment for enzymatic hydrolysis. Bioresour Technol 307:123237. https://doi.org/10.1016/j.biortech.2020.123237

    Article  CAS  PubMed  Google Scholar 

  31. Sheng T, Zhao L, Liu WZ et al (2017) Fenton pre-treatment of rice straw with citric acid as an iron chelate reagent for enhancing saccharification. RSC Adv 7:32076–32086. https://doi.org/10.1039/C7RA04329E

    Article  CAS  Google Scholar 

  32. Zhang YT, Liang J, Zhou WB et al (2019) Comparison of Fenton and bismuth ferrite Fenton-like pretreatments of sugarcane bagasse to enhance enzymatic saccharification. Bioresour Technol 285:121343. https://doi.org/10.1016/j.biortech.2019.121343

    Article  CAS  PubMed  Google Scholar 

  33. Arantes V, Milagres AMF, Filley TR et al (2011) Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J Ind Microbiol Biotechnol 38:541–555. https://doi.org/10.1007/s10295-010-0798-2

    Article  CAS  PubMed  Google Scholar 

  34. Kato DM, Elía N, Flythe M et al (2014) Pretreatment of lignocellulosic biomass using Fenton chemistry. Bioresour Technol 162:273–278. https://doi.org/10.1016/j.biortech.2014.03.151

    Article  CAS  PubMed  Google Scholar 

  35. Navalon S, Alvaro M, Garcia H (2010) Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl Catal B: Environ 99:1–26. https://doi.org/10.1016/j.apcatb.2010.07.006

    Article  CAS  Google Scholar 

  36. Sun Y, Pignatello JJ (1992) Chemical treatment of pesticide wastes. Evaluation of Fe(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circum-neutral pH. J Agric Food Chem 40:322–327. https://doi.org/10.1021/jf00014a031

    Article  CAS  Google Scholar 

  37. Liou RM, Chen SH, Hung MY et al (2005) Fe(III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution. Chemosphere 59:117–125. https://doi.org/10.1016/j.chemosphere.2004.09.080

    Article  CAS  PubMed  Google Scholar 

  38. Kitis M, Kaplan SS (2007) Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles. Chemosphere 68:1846–1853. https://doi.org/10.1016/j.chemosphere.2007.03.027

    Article  CAS  PubMed  Google Scholar 

  39. Pereira MC, Oliveira LCA, Murad E (2012) Iron oxide catalysts: Fenton and Fenton-like reactions–a review. Clay Miner 47:285–302. https://doi.org/10.1180/claymin.2012.047.3.01

    Article  CAS  Google Scholar 

  40. Luca DA, Dantas RF, Esplugas S (2015) Study of Fe(III)-NTA chelates stability for applicability in photo-Fenton at neutral pH. Appl Catal B: Environ 179:372–379. https://doi.org/10.1016/j.apcatb.2015.05.025

    Article  CAS  Google Scholar 

  41. Hu Y, Li YL, He JY et al (2018) EDTA-Fe(III) Fenton-like oxidation for the degradation of malachite green. J Environ Manage 226:256–263. https://doi.org/10.1016/j.jenvman.2018.08.029

    Article  CAS  PubMed  Google Scholar 

  42. Ni Y, Xia ZY, Wang Y et al (2013) Continuous butanol fermentation from inexpensive sugar-based feedstocks by Clostridium saccharobutylicum DSM 13864. Bioresour Technol 129:680–685. https://doi.org/10.1016/j.biortech.2012.11.142

    Article  CAS  PubMed  Google Scholar 

  43. Xing WR, Xu GC, Dong JJ et al (2018) Novel dihydrogen-bonding deep eutectic solvents: pretreatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield. Chem Eng J 333:712–720. https://doi.org/10.1016/j.cej.2017.09.176

    Article  CAS  Google Scholar 

  44. Sluiter A, Hames B, Ruiz RO et al. (2008) Determination of structural carbohydrates and lignin in biomass. NREL/TP-510–42618, Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory (NREL), Golden, Co.

  45. Gong L, Xu ZY, Dong JJ et al (2019) Composite coal fly ash solid acid catalyst in synergy with chloride for biphasic preparation of furfural from corn stover hydrolysate. Bioresour Technol 293:122065. https://doi.org/10.1016/j.biortech.2019.122065

    Article  CAS  PubMed  Google Scholar 

  46. Wang ZK, Hong S, Wen JL et al (2020) Lewis acid-facilitated deep eutectic solvent (DES) pretreatment for producing high-purity and antioxidative lignin. ACS Sustainable Chem Eng 8:1050–1057. https://doi.org/10.1021/acssuschemeng.9b05846

    Article  CAS  Google Scholar 

  47. Ling Z, Tang W, Su Y et al (2021) Promoting enzymatic hydrolysis of aggregated bamboo crystalline cellulose by fast microwave-assisted dicarboxylic acid deep eutectic solvents pretreatments. Bioresour Technol 333:125122. https://doi.org/10.1016/j.biortech.2021.125122

    Article  CAS  PubMed  Google Scholar 

  48. Figueroa-Torres LA, Lizardi-Jiménez MA, López-Ramírez N et al (2020) Saccharification of water hyacinth biomass by a combination of steam explosion with enzymatic technologies for bioethanol production. 3 Biotech 10:432. https://doi.org/10.1007/s13205-020-02426-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Santana JC, Souza Abud AK, Wisniewski A et al (2020) Optimization of an organosolv method using glycerol with iron catalysts for the pretreatment of water hyacinth. Biomass Bioenergy 133:105454. https://doi.org/10.1016/j.biombioe.2019.105454

    Article  CAS  Google Scholar 

  50. Wu MJ, Gong L, Ma CL et al (2021) Enhanced enzymatic saccharification of sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking. Bioresour Technol 340:125695. https://doi.org/10.1016/j.biortech.2021.125695

    Article  CAS  PubMed  Google Scholar 

  51. Yang XH, Xie HX, Du HS et al (2019) Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustainable Chem Eng 7:7200–7208. https://doi.org/10.1021/acssuschemeng.9b00209

    Article  CAS  Google Scholar 

  52. Kamireddy SR, Li JB, Tucker M et al (2013) Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn stover. Ind Eng Chem Res 52:1775–1782. https://doi.org/10.1021/ie3019609

    Article  CAS  Google Scholar 

  53. Chen Z, Bai XL, Lusi A et al (2020) Insights into structural changes of lignin toward tailored properties during deep eutectic solvent pretreatment. ACS Sustainable Chem Eng 8:9783–9793. https://doi.org/10.1021/acssuschemeng.0c01361

    Article  CAS  Google Scholar 

  54. Ong VZQ, Wu TY, Chu KKL et al (2021) A combined pretreatment with ultrasound-assisted alkaline solution and aqueous deep eutectic solvent for enhancing delignification and enzymatic hydrolysis from oil palm fronds. Ind Crop Prod 160:112974. https://doi.org/10.1016/j.indcrop.2020.112974

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful to the National Key Research and Development Program (2018YFA0901700, 2019YFA0906400), National Natural Science Foundation of China (22077054, 22078127), Open Funding Project of the Key Laboratory of Industrial Biotechnology, Ministry of Education (KLIBKF202101), and Program of Introducing Talents of Discipline to Universities (111–2-06) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guochao Xu or Ye Ni.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Wu, X., Wang, Y. et al. A novel deep eutectic solvent–mediated Fenton-like system for pretreatment of water hyacinth and biobutanol production. Biomass Conv. Bioref. 14, 8341–8351 (2024). https://doi.org/10.1007/s13399-022-02940-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02940-0

Keywords

Navigation