Skip to main content
Log in

Enhancing the CO2/CH4 Separation Properties of Cellulose Acetate Membranes Using Polyethylene Glycol Methyl Ether Acrylate Radiation Grafting

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polymer-based membrane separation technology is gaining popularity due to its cost-effectiveness and operational simplicity. Cellulose acetate (CA) stands out as an attractive biobased polymer for membrane applications due to its remarkable mechanical properties and ease of manufacturing. To improve the selectivity of CA-based membranes for carbon dioxide (CO2) separation, the incorporation of polyethylene glycol methyl ether acrylate (PEGMEA), known for its CO2 absorption properties, has emerged as a promising approach for creating high-performance membrane materials with low operating pressure. This study provides insight into the production of PEGMEA-grafted CA membranes via gamma radiation and their performance for CO2/CH4 gas separation. CO2 permeation of the obtained CA-PEGMEA membranes was successfully improved and achieved the desired selectivity for CO2/CH4 separation. A comprehensive study of the membrane properties was conducted, encompassing structural characterization, surface analysis, permeability, selectivity, thermal analysis, and crystallinity, which are essential for understanding and assessing the membrane’s performance. This work emphasizes gamma radiation graft polymerization and shows its applicability for high-performance gas separation membrane materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mubashir M, Yeong YF, Lau KK, Chew TL, Norwahyu J (2018) Efficient CO2/N2 and CO2/CH4 separation using NH2-MIL-53(Al)/cellulose acetate (CA) mixed matrix membranes. Sep Purif Technol 199:140–151. https://doi.org/10.1016/j.seppur.2018.01.038

    Article  CAS  Google Scholar 

  2. Tanvidkar P, Nayak B, Kuncharam BVR (2023) Study of dual filler mixed matrix membranes with acid-functionalized MWCNTs and metal-organic framework (UiO-66-NH2) in cellulose acetate for CO2 separation. J Polym Environ 31(8):3404–3417. https://doi.org/10.1007/s10924-023-02827-9

    Article  CAS  Google Scholar 

  3. Shakeel I, Hussain A, Farrukh S (2019) Effect analysis of nickel ferrite (NiFe2O4) and titanium dioxide (TiO2) nanoparticles on CH4/CO2 gas permeation properties of cellulose acetate based mixed matrix membranes. J Polym Environ 27(7):1449–1464. https://doi.org/10.1007/s10924-019-01442-x

    Article  CAS  Google Scholar 

  4. Vatanpour V et al (2022) Cellulose acetate in fabrication of polymeric membranes: a review. Chemosphere 295:133914

    Article  CAS  PubMed  Google Scholar 

  5. Douna I, Farrukh S, Pervaiz E, Hussain A, Fan XF, Salahuddin Z (2023) Blending of ZnO nanorods in cellulose acetate mixed matrix membrane for enhancement of CO2 permeability. J Polym Environ 31(6):2549–2565. https://doi.org/10.1007/s10924-022-02594-z

    Article  CAS  Google Scholar 

  6. Abdelwahab NA, Ammar NS, Ibrahim HS (2015) Graft copolymerization of cellulose acetate for removal and recovery of lead ions from wastewater. Int J Biol Macromol 79:913–922

    Article  CAS  PubMed  Google Scholar 

  7. Billy M et al (2010) Cellulose acetate graft copolymers with nano-structured architectures: synthesis and characterization. Eur Polymer J 46(5):944–957

    Article  CAS  Google Scholar 

  8. Teramoto Y, Ama S, Higeshiro T, Nishio Y (2004) Cellulose acetate-graft-poly(hydroxyalkanoate)s: synthesis and dependence of the thermal properties on copolymer composition. Macromol Chem Phys 205(14):1904–1915

    Article  CAS  Google Scholar 

  9. Alaslai N, Ghanem B, Alghunaimi F, Litwiller E, Pinnau I (2016) Pure-and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation. J Membr Sci 505:100–107

    Article  CAS  Google Scholar 

  10. He X (2016) Membranes for natural gas sweetening. Encyclopedia of membranes. Springer, pp 1266–1267

    Google Scholar 

  11. Xu J, Wu H, Wang Z, Qiao Z, Zhao S, Wang J (2018) Recent advances on the membrane processes for CO2 separation. Chin J Chem Eng 26(11):2280–2291

    Article  CAS  Google Scholar 

  12. Ji P et al (2009) Preparation of hollow fiber poly(N,N-dimethylaminoethyl methacrylate)–poly(ethylene glycol methyl ether methyl acrylate)/polysulfone composite membranes for CO2/N2 separation. J Membr Sci 342(1–2):190–197

    Article  CAS  Google Scholar 

  13. Wang B, Chen J, Peng H, Gai J, Kang J, Cao Y (2016) Investigation on changes in the miscibility, morphology, rheology and mechanical behavior of melt processed cellulose acetate through adding polyethylene glycol as a plasticizer. J Macromol Sci B 55(9):894–907

    Article  Google Scholar 

  14. Rodrigues Filho G et al (2007) Water flux, DSC, and cytotoxicity characterization of membranes of cellulose acetate produced from sugar cane bagasse, using PEG 600. Polym Bull 59:73–81

    Article  CAS  Google Scholar 

  15. Liu J, Hou X, Park HB, Lin H (2016) High-performance polymers for membrane CO2/N2 separation. Chemistry 22(45):15980–15990

    Article  CAS  PubMed  Google Scholar 

  16. Fan W et al (2021) Multivariate polycrystalline metal–organic framework membranes for CO2/CH4 separation. J Am Chem Soc 143(42):17716–17723

    Article  CAS  PubMed  Google Scholar 

  17. Cao W et al (2017) Hydrophilicity effect on CO2/CH4 separation using carbon nanotube membranes: insights from molecular simulation. Mol Simul 43(7):502–509

    Article  Google Scholar 

  18. Casado-Coterillo C, Garea A, Irabien Á (2020) Effect of water and organic pollutant in CO2/CH4 separation using hydrophilic and hydrophobic composite membranes. Membranes 10(12):405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shafie SNA, Man Z, Idris A (2017) Development of polycarbonate-silica matrix membrane for CO2/CH4 separation. AIP conference proceedings, vol 1891(1). AIP Publishing

    Google Scholar 

  20. Kim NU, Kim J-H, Park BR, Kim KC, Kim JH (2021) Solid-state facilitated transport membrane for CO/N2 separation based on PHMEP-co-PAA comb-like copolymer: experimental and molecular simulation study. J Membr Sci 620:118939

    Article  CAS  Google Scholar 

  21. Wu L-G, Shen J-N, Chen H-L, Gao C-J (2006) CO2 facilitated transport through an acrylamide and maleic anhydride copolymer membrane. Desalination 193(1–3):313–320

    Article  CAS  Google Scholar 

  22. Nasef MM, Güven O (2012) Radiation-grafted copolymers for separation and purification purposes: status, challenges and future directions. Prog Polym Sci 37(12):1597–1656

    Article  CAS  Google Scholar 

  23. Nasef MM, Hegazy E-SA (2004) Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films. Prog Polym Sci 29(6):499–561

    Article  CAS  Google Scholar 

  24. Febriasari A et al (2021) Gamma irradiation of cellulose acetate-polyethylene glycol 400 composite membrane and its performance test for gas separation. Int J Technol 12(6):1198–1206

    Article  Google Scholar 

  25. Espiritu R, Mamlouk M, Scott K (2016) Study on the effect of the degree of grafting on the performance of polyethylene-based anion exchange membrane for fuel cell application. Int J Hydrogen Energy 41(2):1120–1133

    Article  CAS  Google Scholar 

  26. Epp J (2016) X-ray diffraction (XRD) techniques for materials characterization. Materials characterization using nondestructive evaluation (NDE) methods. Elsevier, pp 81–124

    Chapter  Google Scholar 

  27. Mubashir M et al (2021) Cellulose acetate-based membranes by interfacial engineering and integration of ZIF-62 glass nanoparticles for CO2 separation. J Hazard Mater 415:125639

    Article  CAS  PubMed  Google Scholar 

  28. Park J, Paul D (1997) Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method. J Membr Sci 125(1):23–39

    Article  CAS  Google Scholar 

  29. Song C et al (2020) Pebax/MWCNTs-NH2 mixed matrix membranes for enhanced CO2/N2 separation. Greenhouse Gases Sci Technol 10(2):408–420

    Article  CAS  Google Scholar 

  30. Ismail AF, Khulbe KC, Matsuura T (2015) Gas separation membranes, vol 10. Springer, Switzerland, pp 973–978

    Book  Google Scholar 

  31. Ghadimi A, Norouzbahari S, Lin H, Rabiee H, Sadatnia B (2018) Geometric restriction of microporous supports on gas permeance efficiency of thin film composite membranes. J Membr Sci 563:643–654

    Article  CAS  Google Scholar 

  32. Li Y, Cao C, Chung T-S, Pramoda KP (2004) Fabrication of dual-layer polyethersulfone (PES) hollow fiber membranes with an ultrathin dense-selective layer for gas separation. J Membr Sci 245(1):53–60. https://doi.org/10.1016/j.memsci.2004.08.002

    Article  CAS  Google Scholar 

  33. Baracaldo-Santamaría D, Calderon-Ospina CA, Ortiz CP, Cardenas-Torres RE, Martinez F, Delgado DR (2022) Thermodynamic analysis of the solubility of isoniazid in (PEG 200+ water) cosolvent mixtures from 278.15 K to 318.15 K. Int J Mol Sci 23(17):10190

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kono H, Hashimoto H, Shimizu Y (2015) NMR characterization of cellulose acetate: chemical shift assignments, substituent effects, and chemical shift additivity. Carbohyd Polym 118:91–100

    Article  CAS  Google Scholar 

  35. Dutta S, Parida S, Maiti C, Banerjee R, Mandal M, Dhara D (2016) Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature. J Colloid Interface Sci 467:70–80

    Article  CAS  PubMed  Google Scholar 

  36. Yang Z et al (2021) Homoporous hybrid membranes containing metal-organic cages for gas separation. J Membr Sci 636:119564

    Article  CAS  Google Scholar 

  37. Seong MS, Yu HJ, Ha SY, Chang WS, Kim H-J, Lee JS (2022) Poly(poly(ethylene glycol)methyl ether acrylate) micelles for highly CO2 permeable membranes. J Membr Sci 662:120917

    Article  CAS  Google Scholar 

  38. Gu L et al (2009) PPEGMEA-g-PDEAEMA: double hydrophilic double-grafted copolymer stimuli-responsive to both pH and salinity. J Polym Sci A Polym Chem 47(12):3142–3153

    Article  CAS  Google Scholar 

  39. Etemadi H, Yegani R, Seyfollahi M (2017) The effect of amino functionalized and polyethylene glycol grafted nanodiamond on anti-biofouling properties of cellulose acetate membrane in membrane bioreactor systems. Sep Purif Technol 177:350–362

    Article  CAS  Google Scholar 

  40. Luo S, Wiegand JR, Gao P, Doherty CM, Hill AJ, Guo R (2016) Molecular origins of fast and selective gas transport in pentiptycene-containing polyimide membranes and their physical aging behavior. J Membr Sci 518:100–109

    Article  CAS  Google Scholar 

  41. Sen BO, Cetin S, Yahşi U, Soykan U (2021) Role of free volume in mechanical behaviors of side chain LCP grafted products of high density polyethylene. J Polym Res 28:1–18

    Article  Google Scholar 

  42. Li H-L, Ujihira Y, Tanaka S, Yamashita T, Horie K (1996) Variation of free volume parameters of polyalkylmethacrylate derivatives in the range from 15 to 300 K probed by positron annihilation lifetime measurement. J Radioanal Nucl Chem 210:543–553

    Article  CAS  Google Scholar 

  43. Kanehashi S et al (2015) Enhancing gas permeability in mixed matrix membranes through tuning the nanoparticle properties. J Membr Sci 482:49–55

    Article  CAS  Google Scholar 

  44. Gu Y, Kar T, Scheiner S (1999) Fundamental properties of the CH···O interaction: is it a true hydrogen bond? J Am Chem Soc 121(40):9411–9422

    Article  CAS  Google Scholar 

  45. de Freitas RRM, Senna AM, Botaro VR (2017) Influence of degree of substitution on thermal dynamic mechanical and physicochemical properties of cellulose acetate. Ind Crops Products 109:452–458. https://doi.org/10.1016/j.indcrop.2017.08.062

    Article  CAS  Google Scholar 

  46. Wang S et al (2014) Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties. J Membr Sci 460:62–70

    Article  CAS  Google Scholar 

  47. Zhao J, Wang Z, Wang J, Wang S (2006) Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization. J Membr Sci 283(1–2):346–356

    Article  CAS  Google Scholar 

  48. Hoek EM, Bhattacharjee S, Elimelech M (2003) Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir 19(11):4836–4847

    Article  CAS  Google Scholar 

  49. Lalia BS, Kochkodan V, Hashaikeh R, Hilal N (2013) A review on membrane fabrication: structure, properties and performance relationship. Desalination 326:77–95

    Article  CAS  Google Scholar 

  50. Bilchak CR et al (2020) Tuning selectivities in gas separation membranes based on polymer-grafted nanoparticles. ACS Nano 14(12):17174–17183

    Article  CAS  PubMed  Google Scholar 

  51. Xing R, Ho WW (2009) Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation. J Taiwan Inst Chem Eng 40(6):654–662

    Article  CAS  Google Scholar 

  52. Loloei M, Moghadassi A, Omidkhah M, Amooghin AE (2015) Improved CO2 separation performance of Matrimid® 5218 membrane by addition of low molecular weight polyethylene glycol. Greenhouse Gases Sci Technol 5(5):530–544

    Article  CAS  Google Scholar 

  53. Rayer AV, Henni A, Tontiwachwuthikul P (2012) High-pressure solubility of methane (CH4) and ethane (C2H6) in mixed polyethylene glycol dimethyl ethers (Genosorb 1753) and its selectivity in natural gas sweetening operations. J Chem Eng Data 57(3):764–775

    Article  CAS  Google Scholar 

  54. Wang X, Chen H, Zhang L, Yu R, Qu R, Yang L (2014) Effects of coexistent gaseous components and fine particles in the flue gas on CO2 separation by flat-sheet polysulfone membranes. J Membr Sci 470:237–245. https://doi.org/10.1016/j.memsci.2014.07.040

    Article  CAS  Google Scholar 

  55. Ahmad A, Adewole J, Leo C, Ismail S, Sultan A, Olatunji S (2015) Prediction of plasticization pressure of polymeric membranes for CO2 removal from natural gas. J Membr Sci 480:39–46

    Article  CAS  Google Scholar 

  56. Balçık M, Ahunbay MG (2018) Prediction of CO2-induced plasticization pressure in polyimides via atomistic simulations. J Membr Sci 547:146–155

    Article  Google Scholar 

  57. Karimi S, Firouzfar E, Khoshchehreh MR (2019) Assessment of gas separation properties and CO2 plasticization of polysulfone/polyethylene glycol membranes. J Petrol Sci Eng 173:13–19

    Article  CAS  Google Scholar 

  58. Mosén K, Bäckström K, Thalberg K, Schaefer T, Axelsson A, Kristensen HG (2006) The apparent plasticizing effect of polyethylene glycol (PEG) on the crystallinity of spray dried lactose/PEG composites. Eur J Pharm Biopharm 64(2):206–211

    Article  PubMed  Google Scholar 

  59. Lin H, Van Wagner E, Freeman BD, Toy LG, Gupta RP (2006) Plasticization-enhanced hydrogen purification using polymeric membranes. Science 311(5761):639–642

    Article  CAS  PubMed  Google Scholar 

  60. Kanehashi S, Nakagawa T, Nagai K, Duthie X, Kentish S, Stevens G (2007) Effects of carbon dioxide-induced plasticization on the gas transport properties of glassy polyimide membranes. J Membr Sci 298(1–2):147–155

    Article  CAS  Google Scholar 

  61. Robeson LM (2008) The upper bound revisited. J Membr Sci 320(1–2):390–400

    Article  CAS  Google Scholar 

  62. Mubashir M, Yeong YF, Lau KK, Chew TL, Norwahyu J (2018) Efficient CO2/N2 and CO2/CH4 separation using NH2-MIL-53 (Al)/cellulose acetate (CA) mixed matrix membranes. Sep Purif Technol 199:140–151

    Article  CAS  Google Scholar 

  63. Mehmood O et al (2021) Investigation of cellulose acetate/gamma-cyclodextrin MOF based mixed matrix membranes for CO2/CH4 gas separation. Greenhouse Gases Sci Technol 11(2):313–330

    Article  CAS  Google Scholar 

  64. Regmi C, Ashtiani S, Sofer Z, Friess K (2021) Improved CO2/CH4 separation properties of cellulose triacetate mixed-matrix membranes with CeO2@ GO hybrid fillers. Membranes 11(10):777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salestan SK, Rahimpour A, Abedini R (2021) Experimental and theoretical studies of biopolymers on the efficient CO2/CH4 separation of thin-film Pebax® 1657 membrane. Chem Eng Process Process Intens 163:108366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by IAEA CRP22072 Research Contract No. 23577. The authors gratefully acknowledge Mr. Muhamad Yasin YBIC for his assistance with gamma irradiation at the Research Center for Radiation Process Technology (PRTPR-ORTN), BRIN, Jakarta, Indonesia.

Author information

Authors and Affiliations

Authors

Contributions

MS: Funding acquisition, conducted the main idea of the research. AF(1) and MS: wrote the original draft of the manuscript and data processing. RFH: synthesis and degree of grafting test. ALY: DSC analysis and interpretatation. AF(1), AF(7). and IPP: membrane performance test. Rahmawati: XRD analysis, interpretation and reviewed the manuscript. Deswita and NHA: SEM analysis and interpretation. SK: data interpretation and reviewed the manuscript. FS, DN, and KL: NMR and AFM analysis and reviewed the manuscript.

Corresponding author

Correspondence to Meri Suhartini.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Febriasari, A., Suhartini, M., Rahmawati et al. Enhancing the CO2/CH4 Separation Properties of Cellulose Acetate Membranes Using Polyethylene Glycol Methyl Ether Acrylate Radiation Grafting. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03273-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03273-x

Keywords

Navigation