Skip to main content
Log in

A Review of End-of-Life Pathways for Poly(Ethylene Furanoate) and its Derivatives

  • Review paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Concerns are constantly growing about our dependance on plastics derived from fossil feedstock, leading to the development of bio-based alternatives. The bio-based polyester poly(ethylene furanoate) (PEF) has attracted increasing attention from the scientific community due to its potential to replace mass-produced poly(ethylene terephtalate) (PET), mainly used in the packaging, film and fibre sectors. PEF can be 100% bio-based since both its monomers can be produced from biological resources, and exhibits superior properties compared to PET, such as its mechanical and gas barrier properties. As PEF gets closer to being produced at a large scale and entering the plastic market, its end-of-life management should be carefully studied in order to mitigate its environmental footprint. This review focusses on the state-of-the art of the main scenarios related to polymers waste, including mechanical and chemical recycling, composting and incineration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Statista Research Department (2023) Annual production of plastics worldwide from 1950 to 2021. https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/. Accessed 25 Oct 2023

  2. Statista Research Department (2023) Market volume of polyethylene terephthalate worldwide from 2015 to 2022, with a forecast for 2023 to 2030. https://www.statista.com/statistics/1245264/polyethylene-terephthalate-market-volume-worldwide/. Accessed 25 Oct 2023

  3. Nisticò R (2020) Polyethylene terephthalate (PET) in the packaging industry. Polym Test 90. https://doi.org/10.1016/j.polymertesting.2020.106707

  4. de Jong E, Visser HA, Dias AS et al (2022) The Road to bring FDCA and PEF to the market. Polym (Basel) 14:1–32. https://doi.org/10.3390/polym14050943

    Article  CAS  Google Scholar 

  5. Van Berkel JG, Guigo N, Visser HA et al (2018) Chain structure and Molecular Weight Dependent mechanics of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate). Macromolecules 51:8539–8549. https://doi.org/10.1021/acs.macromol.8b01831

    Article  CAS  Google Scholar 

  6. Burgess SK, Kriegel RM, Koros WJ (2015) Carbon Dioxide Sorption and Transport in Amorphous Poly(ethylene furanoate). https://doi.org/10.1021/acs.macromol.5b00333

  7. Burgess SK, Leisen JE, Kraftschik BE et al (2014) Chain mobility, Thermal, and Mechanical properties of Poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47:1383–1391. https://doi.org/10.1021/ma5000199

    Article  CAS  Google Scholar 

  8. Burgess SK, Mikkilineni DS, Yu DB et al (2014) Water sorption in poly(ethylene furanoate) compared to poly(ethylene terephthalate). Part 1: equilibrium sorption. Polym (Guildf) 55:6861–6869. https://doi.org/10.1016/j.polymer.2014.10.047

    Article  CAS  Google Scholar 

  9. Burgess SK, Mikkilineni DS, Yu DB et al (2014) Water sorption in poly(ethylene furanoate) compared to poly(ethylene terephthalate). Part 2: kinetic sorption. Polym (Guildf) 55:6870–6882. https://doi.org/10.1016/j.polymer.2014.10.065

    Article  CAS  Google Scholar 

  10. Gandini A, Silvestre AJD, Neto CP et al (2009) The Furan Counterpart of Polyethylene Terephthalate: an alternative material based on renewable resources. J Polym Sci Polym Chem 47:295–298. https://doi.org/10.1002/pola.23130

    Article  CAS  Google Scholar 

  11. Grand View Research Polyethylene Furanoate Market Size, Share & Trends Analysis Report By Application (Bottles, Fibers, Films), By Region (North America, Europe, APAC, Central & South America, MEA), And Segment Forecasts, 2020–2027. https://www.grandviewresearch.com/industry-analysis/polyethylene-furanoate-pef-market. Accessed 25 Oct 2023

  12. Chen GQ, Patel MK (2012) Plastics derived from biological sources: Present and future: a technical and environmental review. Chem Rev 112:2082–2099. https://doi.org/10.1021/cr200162d

    Article  CAS  PubMed  Google Scholar 

  13. Rosenboom JG, Langer R, Traverso G (2022) Bioplastics for a circular economy. Nat Rev Mater 7:117–137. https://doi.org/10.1038/s41578-021-00407-8

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zheng J, Suh S (2019) Strategies to reduce the global carbon footprint of plastics. Nat Clim Chang 9:374–378. https://doi.org/10.1038/s41558-019-0459-z

    Article  Google Scholar 

  15. Alaerts L, Augustinus M, Van Acker K (2018) Impact of bio-based plastics on current recycling of plastics. Sustain (Switzerland) 10(5):1487. https://doi.org/10.3390/su10051487

  16. Rahimi AR, Garciá JM (2017) Chemical recycling of waste plastics for new materials production. Nat Rev Chem 1:1–11. https://doi.org/10.1038/s41570-017-0046

    Article  CAS  Google Scholar 

  17. Serranti S, Bonifazi G (2019) Techniques for separation of plastic wastes. In: Use of Recycled Plastics in Eco-efficient Concrete. Woodhead Publishing, pp 9–37. https://doi.org/10.1016/b978-0-08-102676-2.00002-5

  18. Lange JP (2021) Managing Plastic Waste-Sorting, Recycling, Disposal, and product redesign. ACS Sustain Chem Eng 9:15722–15738. https://doi.org/10.1021/acssuschemeng.1c05013

    Article  CAS  Google Scholar 

  19. Ragaert K, Delva L, Geem K, Van (2017) Mechanical and chemical recycling of solid plastic waste. Waste Manag 69:24–58. https://doi.org/10.1016/j.wasman.2017.07.044

    Article  CAS  PubMed  Google Scholar 

  20. European PET, Bottle Platform (2022) European PET Bottle Platform Technical Opinion - Avantium Renewable Polymers BV-Poly(ethylene 2,5-furandicarboxylate) resin as barrier material in PET bottles. https://www.epbp.org/download/347/avantium-renewable-polymers-pef-as-barrier-material-in-pet-bottles. Accessed 25 Oct 2023

  21. European PET Bottle Platform technical opinion - Interim Approval - Synvina’s poly(ethylene 2,5-furandicarboxylate) or PEF https://www.epbp.org/download/319/interim-approval-synvinas-polyethylene-25-furandicarboxylate-or-pef. Accessed 05 Mar 2024

  22. De Jong E, Dam MA, Sipos L, Gruter GJM (2012) Furandicarboxylic acid (FDCA), A versatile building block for a very interesting class of polyesters. ACS Symposium Series 1105:1–13. https://doi.org/10.1021/bk-2012-1105.ch001

  23. La Mantia FP (1996) Recycling of PVC and Mixed Plastic Waste. ChemTech Publishing, pp 64–66.

  24. Colin X, Tcharkhtchi A (2013) Thermal degradation of polymers during their mechanical recycling. In: Culleri JC (ed) Recycling: Technological systems, management practices and environmental impact. Nova Science, pp 57–95. https://hal.science/hal-02618344

  25. Ghosal K, Nayak C (2022) Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions-hope vs. hype Mater Adv 3:1974–1992. https://doi.org/10.1039/d1ma01112j

    Article  CAS  Google Scholar 

  26. Velásquez EJ, Garrido L, Guarda A et al (2019) Increasing the incorporation of recycled PET on polymeric blends through the reinforcement with commercial nanoclays. Applied Clay Science 180:105185. https://doi.org/10.1016/j.clay.2019.105185

  27. Grigore ME (2017) Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2:1–11. https://doi.org/10.3390/recycling2040024

    Article  Google Scholar 

  28. Terzopoulou Z, Karakatsianopoulou E, Kasmi N et al (2017) Effect of catalyst type on recyclability and decomposition mechanism of poly(ethylene furanoate) biobased polyester. J Anal Appl Pyrol 126:357–370. https://doi.org/10.1016/j.jaap.2017.05.010

    Article  CAS  Google Scholar 

  29. Hahladakis JN, Velis CA, Weber R et al (2018) An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  30. Terzopoulou Z, Wahbi M, Kasmi N et al (2020) Effect of additives on the thermal and thermo-oxidative stability of poly(ethylene furanoate) biobased polyester. Thermochim Acta 686:178549. https://doi.org/10.1016/j.tca.2020.178549

    Article  CAS  Google Scholar 

  31. Kucherov FA, Gordeev EG, Kashin AS, Ananikov VP (2017) Three-Dimensional Printing with Biomass-derived PEF for Carbon-Neutral Manufacturing. Angew Chem 129:16147–16151. https://doi.org/10.1002/ange.201708528

    Article  Google Scholar 

  32. Paszkiewicz S, Walkowiak K, Irska I et al (2023) Influence of the multiple injection moulding and composting time on the properties of selected packaging and Furan-based polyesters. J Polym Environ 31:722–742. https://doi.org/10.1007/s10924-022-02657-1

    Article  CAS  Google Scholar 

  33. Cruz SA, Zanin M (2006) PET recycling: evaluation of the solid state polymerization process. J Appl Polym Sci 99:2117–2123. https://doi.org/10.1002/app.22526

    Article  CAS  Google Scholar 

  34. Chebbi Y, Kasmi N, Majdoub M et al (2019) Solid-state polymerization of poly(ethylene furanoate) biobased polyester, III: extended study on effect of catalyst type on molecular weight increase. Polym (Basel) 11. https://doi.org/10.3390/polym11030438

  35. Achilias DS, Chondroyiannis A, Nerantzaki M et al (2017) Solid State Polymerization of Poly(Ethylene Furanoate) and its nanocomposites with SiO 2 and TiO 2. https://doi.org/10.1002/mame.201700012

  36. Höhnemann T, Steinmann M, Schindler S et al (2021) Poly(Ethylene Furanoate) along its life-cycle from a Polycondensation Approach to High-Performance Yarn and its recyclate. Materials 14(4):1044. https://doi.org/10.3390/ma14041044

  37. Gabirondo E, Melendez-Rodriguez B, Arnal C et al (2021) Organocatalyzed closed-loop chemical recycling of thermo-compressed films of poly(ethylene furanoate). Polym Chem 12:1571–1580. https://doi.org/10.1039/d0py01623c

    Article  CAS  Google Scholar 

  38. Payne J, Jones MD (2021) The Chemical Recycling of Polyesters for a circular Plastics Economy: challenges and Emerging opportunities. Chemsuschem 14:4041–4070. https://doi.org/10.1002/cssc.202100400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crippa M, Morico B (2019) PET depolymerization: a novel process for plastic waste chemical recycling. Studies in Surface Science and Catalysis. Elsevier, pp 215–229. https://doi.org/10.1016/b978-0-444-64337-7.00012-4

  40. Sipos L, Leroy Olson M (2015) Process for the Depolymerization of a Furandicarboxylate Containing Polyester. United States Patent. https://ppubs.uspto.gov/dirsearch-public/print/downloadPdf/9073886. Accessed 05 Mar 2024

  41. Alberti C, Matthiesen K, Wehrmeister M et al (2021) Zinc-catalyzed depolymerization of the end-of-life poly(ethylene 2,5-furandicarboxylate). ChemistrySelect 6:7972–7975. https://doi.org/10.1002/slct.202102427

    Article  CAS  Google Scholar 

  42. Agostinho B, Silvestre AJD, Sousa AF (2022) From PEF to rPEF: disclosing the potential of deep eutectic solvents in continuous de-/re-polymerization recycling of biobased polyesters. Green Chem 24. https://doi.org/10.1039/d2gc00074a

  43. Yoshida S, Hiraga K, Takehana T et al (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Sci (1979) 351:1196–1199. https://doi.org/10.1126/SCIENCE.AAD6359

    Article  CAS  Google Scholar 

  44. Paparella AN, Perrone S, Salomone A et al (2023) Use of Deep Eutectic solvents in Plastic depolymerization. Catalysts 13(7):1035 https://doi.org/10.3390/catal13071035

    Article  Google Scholar 

  45. Pellis A, Haernvall K, Pichler CM et al (2016) Enzymatic hydrolysis of poly(ethylene furanoate). J Biotechnol 235:47–53. https://doi.org/10.1016/j.jbiotec.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  46. Weinberger S, Haernvall K, Scaini D et al (2017) Enzymatic surface hydrolysis of poly(ethylene furanoate) thin films of various crystallinities. Green Chem 19:5381–5384. https://doi.org/10.1039/c7gc02905e

    Article  CAS  Google Scholar 

  47. Weinberger S, Canadell J, Quartinello F et al (2017) Enzymatic degradation of poly(ethylene 2,5-furanoate) powders and amorphous films. Catalysts 7:318. https://doi.org/10.3390/catal7110318

    Article  CAS  Google Scholar 

  48. Kawai F, Furushima Y, Mochizuki N et al (2022) Efficient depolymerization of polyethylene terephthalate (PET) and polyethylene furanoate by engineered PET hydrolase Cut190. AMB Express 12:. https://doi.org/10.1186/s13568-022-01474-y

  49. Williams PT, Bagri R (2004) Hydrocarbon gases and soils from the recycling of polystyrene waste by catalytic pyrolysis. Int J Energy Res 28:31–44. https://doi.org/10.1002/er.949

    Article  CAS  Google Scholar 

  50. Gebre SH, Sendeku MG, Bahri M (2021) Recent trends in the pyrolysis of Non-degradable Waste Plastics. ChemistryOpen 10:1202–1226. https://doi.org/10.1002/open.202100184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Güneri A, Bernardo CA, Leidner J et al (1998) Frontiers in the Science and Technology of Polymer Recycling. Springer Dordrecht

  52. Tsanaktsis V, Vouvoudi E, Papageorgiou GZ et al (2015) Thermal degradation kinetics and decomposition mechanism of polyesters based on 2,5-furandicarboxylic acid and low molecular weight aliphatic diols. J Anal Appl Pyrol 112:369–378. https://doi.org/10.1016/j.jaap.2014.12.016

    Article  CAS  Google Scholar 

  53. Ren L, Yang S, Wang J et al (2023) Electrocatalytic valorization of waste polyethylene furanoate (PEF) bioplastics for the production of formic acid and hydrogen energy. React Chem Eng 8:1937–1942. https://doi.org/10.1039/d3re00028a

    Article  CAS  Google Scholar 

  54. Al-Tamreh SA, Ibrahim MH, El-Naas MH et al (2021) Electroreduction of Carbon Dioxide into Formate: a Comprehensive Review. ChemElectroChem 8:3207–3220. https://doi.org/10.1002/celc.202100438

    Article  CAS  Google Scholar 

  55. Kim MS, Chang H, Zheng L et al (2022) A review of biodegradable plastics: Chemistry, Applications, Properties, and Future Research needs. Chem Rev 123:9915–9939. https://doi.org/10.1021/acs.chemrev.2c00876

    Article  CAS  Google Scholar 

  56. Siddiqui MN, Redhwi HH, Al-Arfaj AA, Achilias DS (2021) Chemical recycling of PET in the presence of the bio-based polymers, PLA, PHB and PEF: a review. Sustain (Switzerland) 13(19):10528. https://doi.org/10.3390/su131910528

  57. Wilde B, De, Mortier N, Verstichel S et al (2013) Report on current relevant biodegradation and ecotoxicity standards. https://www.biobasedeconomy.eu/app/uploads/sites/2/2017/03/Current-relevant-biodegradation-and-ecotoxicity-standards-chapter-5-10.pdf. Accessed 25 Oct 2023

  58. Gruter GJ (2019) Technology & Markets Day Path to the Future. https://www.avantium.com/wp-content/uploads/2019/06/20190606-Technology-Day_CTO_Gert-Jan_Gruter_breakout_final_.pdf. Accessed 25 Oct 2023

  59. Abraham A, Park H, Choi O, Sang BI (2021) Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production – A review. Bioresour Technol 322:124537. https://doi.org/10.1016/j.biortech.2020.124537

    Article  CAS  PubMed  Google Scholar 

  60. Kunatsa T, Xia X (2022) A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement. Bioresour Technol 344:126311. https://doi.org/10.1016/j.biortech.2021.126311

    Article  CAS  PubMed  Google Scholar 

  61. Wei W, Huang QS, Sun J et al (2019) Revealing the mechanisms of Polyethylene Microplastics affecting anaerobic digestion of Waste activated Sludge. Environ Sci Technol 53:9604–9613. https://doi.org/10.1021/acs.est.9b02971

    Article  CAS  PubMed  Google Scholar 

  62. Dilara Hatinoglu M, Dilek Sanin F (2022) Fate and effects of polyethylene terephthalate (PET) microplastics during anaerobic digestion of alkaline-thermal pretreated sludge. Waste Manag 153:376–385. https://doi.org/10.1016/j.wasman.2022.09.016

    Article  CAS  PubMed  Google Scholar 

  63. Marten E, Müller RJ, Deckwer WD (2003) Studies on the enzymatic hydrolysis of polyesters - I. Low molecular mass model esters and aliphatic polyesters. Polym Degrad Stab 80:485–501. https://doi.org/10.1016/S0141-3910(03)00032-6

    Article  CAS  Google Scholar 

  64. Terzopoulou Z, Tsanaktsis V, Bikiaris DN et al (2016) Biobased poly(ethylene furanoate-co-ethylene succinate) copolyesters: solid state structure, melting point depression and biodegradability. RSC Adv 6:84003–84015. https://doi.org/10.1039/c6ra15994j

    Article  CAS  Google Scholar 

  65. Matos M, Sousa AF, Fonseca AC et al (2014) A new generation of furanic copolyesters with enhanced degradability: poly(ethylene 2,5-furandicarboxylate)-co-poly(lactic acid) copolyesters. Macromol Chem Phys 215:2175–2184. https://doi.org/10.1002/macp.201400175

    Article  CAS  Google Scholar 

  66. Li X, Lin Y, Liu M et al (2023) A review of research and application of polylactic acid composites. J Appl Polym Sci 140:1–22. https://doi.org/10.1002/app.53477

    Article  CAS  Google Scholar 

  67. Wu H, Wen B, Zhou H et al (2015) Synthesis and degradability of copolyesters of 2, 5-furandicarboxylic acid, lactic acid, and ethylene glycol. Polym Degrad Stab 121:100–104. https://doi.org/10.1016/j.polymdegradstab.2015.08.009

    Article  CAS  Google Scholar 

  68. Lu J, Qiu Z, Yang W (2007) Fully biodegradable blends of poly(l-lactide) and poly(ethylene succinate): Miscibility, crystallization, and mechanical properties. Polym 48(14):4196–4204. https://doi.org/10.1016/j.polymer.2007.05.035

    Article  CAS  Google Scholar 

  69. Wu L, Mincheva R, Xu Y et al (2012) High molecular weight poly(butylene succinate-co-butylene furandicarboxylate) copolyesters: from catalyzed polycondensation reaction to thermomechanical properties. Biomacromolecules 13:2973–2981. https://doi.org/10.1021/bm301044f

    Article  CAS  PubMed  Google Scholar 

  70. Liu X, Zhao G, Sun S et al (2022) Biosynthetic Pathway and Metabolic Engineering of Succinic Acid. Front Bioeng Biotechnol 10:1–16. https://doi.org/10.3389/fbioe.2022.843887

    Article  Google Scholar 

  71. Jia Z, Wang J, Sun L et al (2018) Fully bio-based polyesters derived from 2,5-furandicarboxylic acid (2,5-FDCA) and dodecanedioic acid (DDCA): from semicrystalline thermoplastic to amorphous elastomer. J Appl Polym Sci 135:46076. https://doi.org/10.1002/app.46076

    Article  CAS  Google Scholar 

  72. Papadopoulos L, Magaziotis A, Nerantzaki M et al (2018) Synthesis and characterization of novel poly(ethylene furanoate-co-adipate) random copolyesters with enhanced biodegradability. Polym Degrad Stab 156:32–42. https://doi.org/10.1016/j.polymdegradstab.2018.08.002

    Article  CAS  Google Scholar 

  73. Li J, Tu Y, Lu H et al (2021) Rapid synthesis of sustainable poly(ethylene 2,5-furandicarboxylate)-block-poly(tetramethylene oxide) multiblock copolymers with tailor-made properties via a cascade polymerization route. Polym (Guildf) 237:124313. https://doi.org/10.1016/j.polymer.2021.124313

    Article  CAS  Google Scholar 

  74. Lotfi Choobbari M, Ferguson J, Van den Brande N et al (2023) Studying the concentration of polymers in blended microplastics using 2D and 3D raman mapping. Sci Rep 13:1–8. https://doi.org/10.1038/s41598-023-35010-0

    Article  CAS  Google Scholar 

  75. Kaur H, Rawat D, Poria P et al (2022) Ecotoxic effects of microplastics and contaminated microplastics – emerging evidence and perspective. Sci Total Environ 841:156593. https://doi.org/10.1016/j.scitotenv.2022.156593

    Article  CAS  PubMed  Google Scholar 

  76. Zhang X, Li Y, Lei J et al (2023) Time-dependent effects of microplastics on soil bacteriome. J Hazard Mater 447:130762. https://doi.org/10.1016/J.JHAZMAT.2023.130762

    Article  CAS  PubMed  Google Scholar 

  77. Zhang Y, Zhang C, Jiang M, Zhou G (2022) Bio-effects of bio-based and fossil-based microplastics: Case study with lettuce-soil system. Environ Pollut 306:119395. https://doi.org/10.1016/j.envpol.2022.119395

    Article  CAS  PubMed  Google Scholar 

  78. Makarichi L, Jutidamrongphan W, Techato Kanan (2018) The evolution of waste-to-energy incineration: a review. Renew Sustain Energy Rev 91:812–821. https://doi.org/10.1016/j.rser.2018.04.088

    Article  CAS  Google Scholar 

  79. Chirayil CJ, Mishra RK, Thomas S (2019) Materials recovery, direct reuse and incineration of PET bottles. In: Thomas S, Kanny K, Thomas MG et al (eds) Recycling of polyethylene terephthalate bottles. Springer, pp 37–60

  80. nova-Institute (2022) PEF bottles - a sustainable packaging material - ISO Certified LCA of Avantium’s PEF products. https://www.avantium.com/wp-content/uploads/2022/02/20220221-PEF-bottles-–-a-sustainable-packaging-material-ISO-certified-LCA.pdf. Accessed 26 Oct 2023

  81. Stegmann P, Gerritse T, Shen L et al (2023) The global warming potential and the material utility of PET and bio-based PEF bottles over multiple recycling trips. J Clean Prod 395. https://doi.org/10.1016/j.jclepro.2023.136426

  82. Avantium (2023) Press release - Avantium awarded €0.76 million EU funding for its participation in the Rebiolution project. https://www.avantium.com/2023/avantium-awarded-e0-76-million-eu-funding-for-its-participation-in-the-rebiolution-project/. Accessed 05 Mar 2024

Download references

Acknowledgements

The authors are thankful to the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chair in Biomass Valorization (to M.-J. D.) for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

L.S., MSc. student, drafted the manuscript. M.M., Post Doctoral Fellow, provided comments and knowledge on some technical aspects of the manuscript. Prof. M.J.D., supervisor of L.S. and M.M., contributed to all aspects of this work, including research expertise, manuscript review and editing, and funding.

Corresponding author

Correspondence to Marie-Josée Dumont.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silverwood, L., Mottoul, M. & Dumont, MJ. A Review of End-of-Life Pathways for Poly(Ethylene Furanoate) and its Derivatives. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03229-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03229-1

Keywords

Navigation