Skip to main content

Advertisement

Log in

Selective Laser Sintering PLA/Mg Composite Scaffold with Promoted Degradation and Enhanced Mechanical

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA) is widely used in the treatment of bone defects due to its good properties, but the problem of its slow degradation rate needs to be solved urgently. In this study, different proportions of Mg were introduced into PLA to promote and regulate its degradation. A three-dimensional porous composite bone scaffold made of PLA and Mg was prepared using selective laser sintering (SLS). Degradation results showed that the weight loss rate of the Mg-containing scaffold within 4 weeks was nearly five times higher than that of the pure PLA scaffold. Moreover, the degradation mechanism was further explored, and it was believed that the addition of Mg could consume the acidic degradation products of PLA, thus destroying the integrity of the PLA molecular chain and accelerating the flow of the molecular chain, ultimately forming a cycle that promotes degradation. In addition, the magnesium-containing scaffold (PLA/3Mg) also showed good compressive strength (5.6 MPa), which was nearly twice as high as that of the pure PLA scaffold (2.67 MPa). Therefore, we believe that introducing an appropriate amount of Mg can better adjust the balance between the degradation and mechanical properties of PLA scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gendviliene I, Simoliunas E, Rekstyte S, Malinauskas M, Zaleckas L, Jegelevicius D, Bukelskiene V, Rutkunas V (2020) Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds. J Mech Behav Biomed Mater 104:103616

    Article  CAS  PubMed  Google Scholar 

  2. Qi Y, Li X, He Y, Zhang D, Ding J (2018) Mechanism of acceleration of iron corrosion by a polylactide coating. ACS Appl Mater Interfaces 11(1):202–218

    Article  PubMed  Google Scholar 

  3. Lin W, Zhang H, Zhang W, Qi H, Zhang G, Qian J, Li X, Qin L, Li H, Wang X, Qiu H, Shi X, Zheng W, Zhang D, Gao R, Ding J (2021) In vivo degradation and endothelialization of an iron bioresorbable scaffold. Bioact Mater 6(4):1028–1039

    CAS  PubMed  Google Scholar 

  4. Oksiuta Z, Jalbrzykowski M, Mystkowska J, Romanczuk E, Osiecki T (2020) Mechanical and thermal properties of polylactide (PLA) composites modified with Mg, Fe, and polyethylene (PE) additives. Polymers (Basel) 12(12):2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abdal-hay A, Raveendran NT, Fournier B, Ivanovski S (2020) Fabrication of biocompatible and bioabsorbable polycaprolactone/ magnesium hydroxide 3D printed scaffolds: degradation and in vitro osteoblasts interactions. Composites B 197:108158

    Article  CAS  Google Scholar 

  6. Zhao Y, Liu B, Bi H, Yang J, Li W, Liang H, Liang Y, Jia Z, Shi S, Chen M (2018) The degradation properties of MgO whiskers/PLLA composite in vitro. Int J Mol Sci 19(9):2740

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shahrezaee M, Salehi M, Keshtkari S, Oryan A, Kamali A, Shekarchi B (2018) In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects. Nanomedicine 14(7):2061–2073

    Article  CAS  PubMed  Google Scholar 

  8. Maadani AM, Salahinejad E (2022) Performance comparison of PLA- and PLGA-coated porous bioceramic scaffolds: Mechanical, biodegradability, bioactivity, delivery and biocompatibility assessments. J Control Release 351:1–7

    Article  CAS  PubMed  Google Scholar 

  9. Rojas-Martínez LE, Flores-Hernandez CG, López-Marín LM, Martinez-Hernandez AL, Thorat SB, Reyes Vasquez CD, Del Rio-Castillo AE, Velasco-Santos C (2020) D printing of PLA composites scaffolds reinforced with keratin and chitosan: effect of geometry and structure. Eur Polym J 141:110088

    Article  Google Scholar 

  10. Palma-Ramírez D, Torres-Huerta AM, Domínguez-Crespo MA, Del Angel-López D, Flores-Vela AI, de la Fuente D (2019) Data supporting the morphological/topographical properties and the degradability on PET/PLA and PET/chitosan blends. Data Brief 25:10402

    Article  Google Scholar 

  11. Zhang Y, Zhang Q, He F, Zuo F, Shi X (2022) Fabrication of cancellous-bone-mimicking β-tricalcium phosphate bioceramic scaffolds with tunable architecture and mechanical strength by stereolithography 3D printing. J Eur Ceram Soc 42(14):6713–6720

    Article  CAS  Google Scholar 

  12. Wang W, Zhang B, Li M, Li J, Zhang C, Han Y, Wang L, Wang K, Zhou C, Liu L, Fan Y, Zhang X (2021) 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Composites B 224:109192

    Article  CAS  Google Scholar 

  13. A. Mehboob, H. Mehboob, S.-H. Chang, Evaluation of unidirectional BGF/PLA and Mg/PLA biodegradable composites bone plates-scaffolds assembly for critical segmental fractures healing. Composites Part A: Applied Science and Manufacturing 2020, 135.

  14. Talaat WM, Ghoneim MM, Salah O, Adly OA (2018) Autologous bone marrow concentrates and concentrated growth factors accelerate bone regeneration after enucleation of mandibular pathologic lesions. J Craniofac Surg 29(4):992–997

    Article  PubMed  Google Scholar 

  15. Liu YY, Blazquez JP, Yin GZ, Wang DY, Llorca J, Echeverry-Rendón M (2023) A strategy to tailor the mechanical and degradation properties of PCL-PEG-PCL based copolymers for biomedical application. Eur Polym J 198:112388

    Article  CAS  Google Scholar 

  16. Dong J, Li Y, Lin P, Leeflang MA, van Asperen S, Yu K, Tumer N, Norder B, Zadpoor AA, Zhou J (2020) Solvent-cast 3D printing of magnesium scaffolds. Acta Biomater 114:497–514

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Qi C, Han L, Chu C, Bai J, Guo C, Xue F, Shen B, Chu PK (2017) Influence of dynamic compressive loading on the in vitro degradation behavior of pure PLA and Mg/PLA composite. Acta Biomater 64:269–278

    Article  CAS  PubMed  Google Scholar 

  18. Lin T, Wang X, Jin L, Li W, Zhang Y, Wang A, Peng J, Shao H (2021) Manufacturing of porous magnesium scaffolds for bone tissue engineering by 3D gel-printing. Mater Design 209:109948

    Article  CAS  Google Scholar 

  19. Campo RD, Savoini B, Munoz A, Monge MA, Garces G (2014) Mechanical properties and corrosion behavior of Mg-HAP composites. J Mech Behav Biomed Mater 39:238–246

    Article  CAS  PubMed  Google Scholar 

  20. Khalil KA (2012) A new-developed nanostructured Mg/HAp nanocomposite by high frequency induction heat sintering process. Int J Electrochem Sci 7(11):10698–10710

    Article  Google Scholar 

  21. Hernández L, González JE, Barranco V, Veranes-Pantoja Y, Galván JC, Gattorno GR (2022) Biomimetic hydroxyapatite (HAp) coatings on pure Mg and their physiological corrosion behavior. Ceram Int 48(1):1208–1222

    Article  Google Scholar 

  22. Li X, Chu C, Wei Y, Qi C, Bai J, Guo C, Xue F, Lin P, Chu PK (2017) In vitro degradation kinetics of pure PLA and Mg/PLA composite: effects of immersion temperature and compression stress. Acta Biomater 48:468–478

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt F, Weishaupt O, Radwan M, Willeke M, Frerich S (2023) PLA-Mg composites by laser-based powder bed fusion—a preliminary study. Addit Manuf Lett 6:100148

    Article  Google Scholar 

  24. Shuai C, Li Y, Feng P, Guo W, Yang W, Peng S (2018) Positive feedback effects of Mg on the hydrolysis of poly-l-lactic acid (PLLA): promoted degradation of PLLA scaffolds. Polym Test 68:27–33

    Article  CAS  Google Scholar 

  25. Hu Y, Guo Y, Zhao F, Zuo R, Lu X, Xiong S, Huang P, Yang B (2021) Preparation of bioactive TiO2–MgO composite ceramics with bone-promoting properties. Ceram Int 47(15):21554–21569

    Article  CAS  Google Scholar 

  26. Salima M, Youcef M, Bouarroudj T, Chetoui A, Belkhettab I, Bezzi H, Aoudjit L, Zioui D, Ziouche A, Mekki DE (2023) Sunlight-assisted photocatalytic degradation of tartrazine in the presence of Mg doped ZnS nanocatalysts. Solid State Sci 143:107260

    Article  CAS  Google Scholar 

  27. Bedair TM, Heo Y, Ryu J, Bedair HM, Park W, Han DK (2021) Biocompatible and functional inorganic magnesium ceramic particles for biomedical applications. Biomater Sci 9(6):1903–1923

    Article  CAS  PubMed  Google Scholar 

  28. Anita Lett J, Sagadevan S, Leonard E, Fatimah I, Motalib Hossain MA, Mohammad F, Al-Lohedan HA, Paiman S, Alshahateet SF, Abd Razak SI, Johan MR (2021) Bone tissue engineering potentials of 3D printed magnesium-hydroxyapatite in polylactic acid composite scaffolds. Artif Org 45(12):1501–1512

    Article  CAS  Google Scholar 

  29. Tom T, Sreenilayam SP, Brabazon D, Jose JP, Joseph B, Madanan K, Thomas S (2022) Additive manufacturing in the biomedical field-recent research developments. Results Eng 16:100661

    Article  Google Scholar 

  30. Qin Y, Wen P, Guo H, Xia D, Zheng Y, Jauer L, Poprawe R, Voshage M, Schleifenbaum JH (2019) Additive manufacturing of biodegradable metals: Current research status and future perspectives. Acta Biomater 98:3–22

    Article  CAS  PubMed  Google Scholar 

  31. Novak N, Al-Ketan O, Borovinšek M, Krstulović-Opara L, Rowshan R, Vesenjak M, Ren Z (2021) Development of novel hybrid TPMS cellular lattices and their mechanical characterisation. J Market Res 15:1318–1329

    CAS  Google Scholar 

  32. Y. Xu, W. Ding, M. Chen, X. Guo, P. Li, M. Li, Porous iron-reinforced polylactic acid TPMS bio-scaffolds: Interlocking reinforcement and synergistic degradation. Materials & Design 2023, 231.

  33. Li M, Zhang G, Yin S, Wang C, Guan R (2023) Electronic and optical characteristics of long-period stacking ordered phases in Mg-Y-Zn alloys: a first-principles study. Mater Today Commun 37:107326

    Article  CAS  Google Scholar 

  34. Shuai C, Zan J, Yang Y, Peng S, Yang W, Qi F, Shen L, Tian Z (2020) Surface modification enhances interfacial bonding in PLLA/MgO bone scaffold. Mater Sci Eng C 108:110486

    Article  CAS  Google Scholar 

  35. Cifuentes SC, Frutos E, Benavente R, Lorenzo V, Gonzalez-Carrasco JL (2017) Assessment of mechanical behavior of PLA composites reinforced with Mg micro-particles through depth-sensing indentations analysis. J Mech Behav Biomed Mater 65:781–790

    Article  CAS  PubMed  Google Scholar 

  36. Chiu K-Y, Chen K-K, Wang Y-H, Lin F-H, Huang J-Y (2020) Formability of Fe-doped bioglass scaffold via selective laser sintering. Ceram Int 46(10):16510–16517

    Article  CAS  Google Scholar 

  37. Di Giamberardino P, Aceto M, Giannini O, Verotti M (2018) Recursive least squares filtering algorithms for on-line viscoelastic characterization of biosamples. Actuators 7(4):78

    Article  Google Scholar 

  38. Dong Q, Li Y, Jiang H, Zhou X, Liu H, Lu M, Chu C, Xue F, Bai J (2021) 3D-cubic interconnected porous Mg-based scaffolds for bone repair. J Magnes Alloys 9(4):1329–1338

    Article  Google Scholar 

  39. Farto-Vaamonde X, Diaz-Gomez L, Parga A, Otero A, Concheiro A, Alvarez-Lorenzo C (2022) Perimeter and carvacrol-loading regulate angiogenesis and biofilm growth in 3D printed PLA scaffolds. J Control Release 352:776–792

    Article  CAS  PubMed  Google Scholar 

  40. Sadeghian H, Ayatollahi MR, Yazid Yahya M (2023) Effects of copper additives on load carrying capacity and micro mechanisms of fracture in 3D-printed PLA specimens. Theor Appl Fract Mech 127:104

    Article  Google Scholar 

  41. Wang X, Liu M, Li H, Yin A, Xia C, Lou X, Wang H, Mo X, Wu J (2021) MgO-incorporated porous nanofibrous scaffold promotes osteogenic differentiation of pre-osteoblasts. Mater Lett 299:130098

    Article  CAS  Google Scholar 

  42. Kum CH, Cho Y, Joung YK, Choi J, Park K, Seo SH, Park YS, Ahn DJ, Han DK (2013) Biodegradable poly(l-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical reinforcement and reduced inflammation. J Mater Chem B 1(21):2764–2772

    Article  CAS  PubMed  Google Scholar 

  43. Wen W, Zou Z, Luo B, Zhou C (2016) In vitro degradation and cytocompatibility of g-MgO whiskers/PLLA composites. J Mater Sci 52(4):2329–2344

    Article  Google Scholar 

  44. Zan J, Qian G, Deng F, Zhang J, Zeng Z, Peng S, Shuai C (2022) Dilemma and breakthrough of biodegradable poly-l-lactic acid in bone tissue repair. J Market Res 17:2369–2387

    CAS  Google Scholar 

  45. Bakhshi R, Mohammadi-Zerankeshi M, Mehrabi-Dehdezi M, Alizadeh R, Labbaf S, Abachi P (2023) Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications. J Mech Behav Biomed Mater 138:105655

    Article  CAS  PubMed  Google Scholar 

  46. Ali F, Kalva SN, Mroue KH, Keyan KS, Tong Y, Khan OM, Koç M (2023) Degradation assessment of Mg-Incorporated 3D printed PLA scaffolds for biomedical applications. Bioprinting 35:e00302

    Article  Google Scholar 

  47. Mazuki NF, Nagao Y, KufianA MZ, Samsudin S (2022) The influences of PLA into PMMA on crystallinity and thermal properties enhancement-based hybrid polymer in gel properties. Mater Today 49:3105–3111

    CAS  Google Scholar 

  48. Zhang Y, Müller MT, Boldt R, Stommel M (2023) Crystallinity effect on electron-induced molecular structure transformations in additive-free PLA. Polymer 265:125609

    Article  CAS  Google Scholar 

Download references

Acknowledgements

(1) Natural Science Foundation of Hunan Provincial (2022JJ50182); (2) Scientific Research Foundation of Hunan Provincial Education Depart-ment (21B0686); (3) Research Foundation of Shaoyang Science and Technology Bureau(2021GZ041); (4) Graduate Research and Innovation Project of Shaoyang University (CX2022SY059).

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the manuscript.

Corresponding authors

Correspondence to Dongying Li or Yong Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Yuan, H., Ding, W. et al. Selective Laser Sintering PLA/Mg Composite Scaffold with Promoted Degradation and Enhanced Mechanical. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03208-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03208-6

Keywords

Navigation