Skip to main content
Log in

Green Decoration of Silver Nanoparticles on Hydroxymethylated Lignin-Modified Magnetic Nanoparticles Using Cydonia oblonga Flower Extract: Evaluating of Its Catalytic, Antioxidant and Cytotoxic Effects Against 6 Thyroid Cancer Cell Lines

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

We herein described a biogenic route for the in situ supporting silver nanoparticles on hydroxymethylated lignin (HL) coated Fe3O4 (iron oxide) magnetic nanoparticles using the Cydonia oblonga flower extract (Fe3O4@HL/Ag NPs) and its catalytic activity in the acetylation of alcohols and subsequent its biological activity are investigated. The successful fabrication of Fe3O4@HL/Ag NPs was established by using advanced analytical techniques such as Fourier Transformed Infra-Red spectroscopy, Transmission Electron Microscopy, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray spectroscopy, elemental mapping and Vibrating Sample Magnetization. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to measure anti-thyroid cancer (on WRO, FTC133, BCPAP, TPC1, K1, and 8505C cells) properties of Fe3O4@HL/Ag NPs nanocomposite. The findings indicate that in 3 days, the cancer cell survival percentage in various dilations reduced as much as the Fe3O4@HL/Ag NPs nanocomposite concentration increased. The best anticancer effect was reported at 1000 μg/ml dilation. MTT findings reveal that IC50 = 146, 181, 250, 141, 170, and 125 µg/ml is a Fe3O4@HL/Ag NPs nanocomposite concentration in which 50% of the WRO, FTC133, BCPAP, TPC1, K1, and 8505C thyroid carcinoma cells. The results indicated that these Fe3O4@HL/Ag NPs nanocomposite could inhibit thyroid cancer cells more strongly than normal cells. Fe3O4@HL/Ag NPs nanocomposite shows high antioxidant effects against DPPH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The authors declare that the data can be available on request to the authors.

References

  1. Chen AY, Jemal A, Ward EM (2009) Increasing incidence of differentiated thyroid cancer in the United States: 1988–2005. Cancer 115(16):3801–3807

    Article  PubMed  Google Scholar 

  2. Larijani B, Aghakhani S, Khajedini H, Baradar-jalili R (2003) Clinico-pathological features of thyroid cancer as observed in five referral hospitals in Iran: a review of 1177 cases. Actaoncol 42:337–347

    Google Scholar 

  3. Khayamzadeh M, Khayamzadeh M, Tadayon N, Salmanian R, Salmanian R, Zham H et al (2011) Survival of thyroid cancer and social determinants in Iran, 2001–2005. Asian Pacific J cancer Prev 12(1):95–98

    Google Scholar 

  4. Schneider TC, Abdulrahman RM, Corssmit EP, Morreau H, Smit JW, Kapiteijn E (2012) Long-term analysis of the efficacy and tolerability of sorafenib in advanced radio-iodine refractory differentiated thyroid carcinoma: final results of a phase II trial. Eur J Endocrinol 167(5):643–650

    Article  CAS  PubMed  Google Scholar 

  5. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE et al (2016) American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid 26(1):1–133

    Article  PubMed  PubMed Central  Google Scholar 

  6. Smallridge RC, Copland JA, Brose MS (2013) Efatutazone, an oral PPAR- agonist, in combination with paclitaxel in anaplastic thyroid cancer: results of a multicenter phase I trial. J Clin Endocrinol Metab 98(6):2392–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandris D et al (2013) Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 368(7):623–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Savvides P, Nagaiah G, Lavertu P, Fu P, Wright JJ, Chapman R et al (2013) Phase II trial of sorafenib in patients with advanced anaplastic carcinoma of the thyroid. Thyroid 23(5):600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reynolds P, Elkin EP, Layefsky ME, Har Lee GM (1999) Cancer in California school employees. Am J Indust Med 36:271–278

    Article  CAS  Google Scholar 

  10. Saiselet M, Floor S, Tarabichi M, Dom G, Hébrant A, Staveren WCG et al (2012) Thyroid cancer cell lines: an overview. Front Endocrinol 133(3):1–9

    Google Scholar 

  11. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 20(7):193

    Article  Google Scholar 

  12. Qin L, Wu L, Jiang S, Yang D, He H, Zhang F et al (2018) Multifunctional micelle delivery system for overcoming multidrug resistance of doxorubicin. J Drug Target 26:289–295

    Article  CAS  PubMed  Google Scholar 

  13. Sui H, Zhou S, Wang Y, Liu X, Zhou L, Yin P et al (2011) COX-2 contributes to P-glycoprotein-mediated multidrug resistance via phosphorylation of c-Jun at Ser63/73 in colorectal cancer. Carcinogenesis 32:667–675

    Article  CAS  PubMed  Google Scholar 

  14. Viktorsson K, Lewensohn R, Zhivotovsky B (2005) Apoptotic pathways and therapy resistance in human malignancies. Adv Cancer Res 94:143–196

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Y, Huan ML, Liu M, Cheng Y, Sun Y, Cui H et al (2016) Doxorubicin and resveratrol co-delivery nanoparticle to overcome doxorubicin resistance. Sci Rep 6:35267. https://doi.org/10.1038/srep35267

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao MD, Li JQ, Chen FY, Dong W, Wen LJ, Fei WD et al (2019) Co-delivery of curcumin and paclitaxel by “core–shell” targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. Int J Nanomed 14:9453–9467

    Article  CAS  Google Scholar 

  17. Zhang S, Guo N, Wan G, Zhang T, Li C, Wang Y et al (2019) pH and redox dual-responsive nanoparticles based on disulfide-containing poly(β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer. J Nanobiotechnol 17:109. https://doi.org/10.1186/s12951-019-0540-9

    Article  CAS  Google Scholar 

  18. Zang X, Zhao X, Hu H, Qiao M, Deng Y, Chen D (2017) Nanoparticles for tumor immunotherapy. Eur J Pharm Biopharm 115:243–256

    Article  CAS  PubMed  Google Scholar 

  19. Xia S, Yu S, Yuan X (2005) Effects of hypoxia on expression of P-gp and mutltidrug resistance protein in human lung adenocarcinoma A549 cell line. J Huazhong Univ Sci Technol Med Sci 25:279–281

    CAS  Google Scholar 

  20. Wang X, Liu X, Li Y, Wang P, Feng X, Liu Q et al (2017) Sensitivity to antitubulin chemotherapeutics is potentiated by a photoactivable nanoliposome. Biomaterials 141:50–62

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Gao Z, Liu X, Agarwal P, Zhao S, Conroy DW et al (2018) Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat Commun 9:562

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Hamelian M, Joshani Z, Zangeneh A, Zangeneh MM (2019) Appl Organometal Chem 33:e5277

    Google Scholar 

  23. Hamelian M, Zangeneh MM, Amisama A, Varmira K, Veisi H (2018) Appl Organometal Chem 32:e4458

    Article  Google Scholar 

  24. Singh SK, Lillard JW, Singh R (2018) Reversal of drug resistance by planetary ball milled (PBM) nanoparticle loaded with resveratrol and docetaxel in prostate cancer. Cancer Lett 427:49–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hemmati S, Zamenian T, Delsooz N, Zangeneh A, Zangenehet MM (2020) Appl Organometal Chem 34:e5274

    Article  CAS  Google Scholar 

  26. Zangeneh MM (2020) Appl Organometal Chem 34:e5295

    Article  CAS  Google Scholar 

  27. Hamelian M, Varmira K, Karmakar B, Veisi H (2022). Catal Lett. https://doi.org/10.1007/s10562-022-04164-3

    Article  Google Scholar 

  28. Alikhani N, Hekmati M, Karmakar B, Veisi H (2022) Inorg Chem Commun 139:109351

    Article  CAS  Google Scholar 

  29. Shahriari M, Sedigh MAH, Shahriari M, Stenzel M, Zangeneh MM, Zangeneh A, Mahdavi B, Asadnia M, Gholami J, Karmakar B, Veisi H (2022) Inorg Chem Commun 137:109523

    Article  Google Scholar 

  30. Hemmati S, Heravi MM, Karmakar B, Veisi H (2021) Sci Rep 11:12362

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hemmati S, Heravi MM, Karmakar B, Veisi H (2020) J Mol Liq 319:114302

    Article  CAS  Google Scholar 

  32. Shahriari M, Sedigh MA, Mahdavian Y, Mahdigholizad S, Pirhayati M, Karmakar B, Veisi H (2021) Int J Biol Macromol 172:55–61

    Article  CAS  PubMed  Google Scholar 

  33. Veisi H, Tamoradi T, Karmakar B, Hemmati SJ (2020) Phys Chem Solids 138:109256–109262

    Article  CAS  Google Scholar 

  34. Hemmati S, Rashtiani A, Zangeneh MM, Mohammadi P, Zangeneh A, Veisi H (2019) Polyhedron 158:8–14

    Article  CAS  Google Scholar 

  35. Hamelian M, Zangeneh MM, Shahmohammadi A, Varmira K, Veisi H (2020) Appl Organometal Chem 34:e5278

    Article  CAS  Google Scholar 

  36. Jalalvand AR, Zhaleh M, Goorani S, Zangeneh MM, Seydi N, Zangeneh A, Moradi R (2019) J Photochem Photobiol B 192:103–112

    Article  CAS  PubMed  Google Scholar 

  37. Patil YB, Swaminathan SK, Sadhukha T, Ma L, Panyam J (2010) The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 31:358–365

    Article  CAS  PubMed  Google Scholar 

  38. Navarro G, Sawant RR, Biswas S, Essex S, Tros de Ilarduya C, Torchilin VP (2012) P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells. Nanomedicine 7:65–78

    Article  CAS  PubMed  Google Scholar 

  39. Green TW, Wuts PCM (1999) Protective groups in organic synthesis, 3rd edn. Wiley, New York

    Book  Google Scholar 

  40. Otera J (2003) Esterification: methods reactions and applications, 1st edn. Wiley–VCH, Weinheim

    Book  Google Scholar 

  41. Steglich W, Hofle G (1969) Angew Chem Int Ed 8:981

    Article  CAS  Google Scholar 

  42. Vedejs E, Diver TS (1993) J Am Chem Soc 115:3358

    Article  CAS  Google Scholar 

  43. Scriven EFV (1983) Chem Soc Rev 12:129

    Article  CAS  Google Scholar 

  44. Tomohumi S, Kousaburo O, Takashi O (1991) Synthesis 1141:1

    Google Scholar 

  45. Orita A, Tanahashi C, Kakuda A, Otera J (2000) Angew Chem Int Ed 39:2877

    Article  ADS  CAS  Google Scholar 

  46. Alleti R, Perambuduru M, Samanha S, Reddy VP (2005) J Mol Catal A Chem 226:57

    Article  CAS  Google Scholar 

  47. Karimi B, Maleki J (2003) J Org Chem 68:4951

    Article  CAS  PubMed  Google Scholar 

  48. Ghaffari Khaligh N (2012) J Mol Catal A Chem 363–364:90

    Article  Google Scholar 

  49. Rajabi F (2009) Tetrahedron Lett 50:395

    Article  CAS  Google Scholar 

  50. Osiglio L, Sathicq AG, Romanelli GP, Blanco MN (2012) J Mol Catal A Chem 359:97

    Article  CAS  Google Scholar 

  51. López I, Bravo JL, Caraballo M, Barneto JL, Silvero G (2011) Tetrahedron Lett 52:3339

    Article  Google Scholar 

  52. Tamaddon F, Amrollahi MA, Sharafat L (2005) Tetrahedron Lett 46:7841

    Article  CAS  Google Scholar 

  53. Gupta R, Kumar V, Gupta M, Paul S, Gupta R (2008) Indian J Chem Sec B 47:1739

    Google Scholar 

  54. Kumar P, Pandey RK, Bodas MS, Dagade SP, Dongare MK, Ramaswamy AV (2002) J Mol Catal A Chem 181:207

    Article  CAS  Google Scholar 

  55. Veisi H, Ghorbani-Vaghei R, Eskandari H, Hemmati S, Rezaei A, Hajinazari S, Heidari Far MR, Entezari A (2011) Phosphorus Sulfur Silicon 186:213

    Article  CAS  Google Scholar 

  56. Veisi H, Taheri S, Hemmati S (2016) Green Chem 18:6337

    Article  CAS  Google Scholar 

  57. Grigalius I, Petrikaite V (2017) Relationship between antioxidant and anticancer activity of trihydroxyflavones. Molecules 22(12):2169

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Shanxi Province 136 Revitalization Medical Project Construction Funds, Scientific Research Project of Shanxi Provincial Health Commission (Grant Number 2023047).

Author information

Authors and Affiliations

Authors

Contributions

PM: Visualization, Writing original draft, Formal analysis. PM: Funding acquisition, Methodology, Supervision. PM: Writing original draft, Formal analysis, Writing-review and editing.

Corresponding author

Correspondence to Peng Ma.

Ethics declarations

Conflict of interest

The authors declare for no conflict of interest.

Ethical Approval

The Shanxi Academy of Medical Sciences ethical committee approved the protocol of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P. Green Decoration of Silver Nanoparticles on Hydroxymethylated Lignin-Modified Magnetic Nanoparticles Using Cydonia oblonga Flower Extract: Evaluating of Its Catalytic, Antioxidant and Cytotoxic Effects Against 6 Thyroid Cancer Cell Lines. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03201-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03201-z

Keywords

Navigation