Skip to main content

Advertisement

Log in

Composite Films from Steam-exploded Gelatin and Thyme Essential Oil: Production, Characterization and Application as Coatings

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, the production and characterization of composite films were performed using gelatin extracted after pretreatment by steam explosion at temperatures of 120 ºC (GEL120) and 130 ºC (GEL130) for 10 min, with and without the addition of Thyme Essential Oil at 0.78% (v/v), employing the casting method. The film-forming solutions were also applied as coatings for refrigerated chicken fillets, and a shelf-life analysis was conducted over 15 days. For comparison, commercial gelatin was used at all stages of production, characterization, and application. In in vitro tests, thyme essential oil exhibited antimicrobial potential against five foodborne pathogens. Due to their distinct physicochemical characteristics, the GEL130 films demonstrated higher tensile strength (7.23 MPa) and lower solubility (76.45%) compared to GEL120. The impact of thyme essential oil addition on the film properties varied depending on the type of gelatin used. The coated chicken fillets showed lower weight loss and pH; however, no significant reduction was observed for Enterobacteriaceae and aerobic mesophilic bacteria compared to the uncoated samples under refrigeration. These findings were promising for understanding the effect of incorporating thyme essential oil into films from gelatins with different characteristics. Additionally, further research is needed to enhance the application of coatings in food matrices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. Hassan HF, Koaik L, Khoury AE, Atoui A, El Obeid T, Karam L (2022) Dietary exposure and risk assessment of mycotoxins in thyme and thyme-based products marketed in Lebanon. Toxins 14(5):331. https://doi.org/10.3390/toxins14050331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosseto M, Rigueto VT, Krein CDC, Balbé DP, Massuda NA, L., Dettmer A (2020) Biodegradable Polymers: Opportunities and Challenges. In: Sand, A., Zaki, E. (Eds.), Organic Polymers IntechOpen. https://doi.org/10.5772/intechopen.88146

  3. Żołek-Tryznowska Z, Holica J (2020) Starch films as an environmentally friendly packaging material: Printing performance. J Clean Prod 276:124265. https://doi.org/10.1016/j.jclepro.2020.124265

    Article  CAS  Google Scholar 

  4. Huang K, Wang Y (2022) Recent applications of regenerated cellulose films and hydrogels in food packaging. Curr Opin Food Sci 43:7–17. https://doi.org/10.1016/j.cofs.2021.09.003

    Article  CAS  Google Scholar 

  5. Wang H, Qian J, Ding F (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66(2):395–413. https://doi.org/10.1021/acs.jafc.7b04528

    Article  CAS  PubMed  Google Scholar 

  6. González A, Igarzabal CIA (2015) Nanocrystal-reinforced soy protein films and their application as active packaging. Food Hydrocolloids 43:777–784. https://doi.org/10.1016/j.foodhyd.2014.08.008

    Article  CAS  Google Scholar 

  7. Rigueto CVT, Rosseto M, Alessandretti I, Oliveira R, Wohlmuth DAR, Menezes JF, Loss RA, Dettmer A, Pizzutti IR (2022) Gelatin films from wastes: a review of production, characterization, and application trends in Food Preservation and Agriculture. Food Res Int 162:112114. https://doi.org/10.1016/j.foodres.2022.112114

    Article  CAS  Google Scholar 

  8. Rigueto CVT, Nazari MT, Massuda LÁ, Ostwald BEP, Piccin JS, Dettmer A (2021) Production and environmental applications of gelatin-based composite adsorbents for contaminants removal: a review. Environ Chem Lett 19:2465–2486. https://doi.org/10.1007/s10311-021-01184-0

    Article  CAS  Google Scholar 

  9. Rigueto CVT, Rosseto M, Gomes KS, Loss RA, Biduski B, Manera C, Godinho M, Brião VB, Dettmer A, Pizzutti IR (2023) Steam explosion pretreatment for bovine limed hide waste gelatin extraction. Food Hydrocolloids 108854. https://doi.org/10.1016/j.foodhyd.2023.108854

  10. Rigueto CVT, Rosseto M, Alessandretti I, Krein DDC, Emer CD, Loss RA, Dettmer A, Pizzutti IR (2023) Extraction and improvement of protein functionality using steam explosion pretreatment: advances, challenges, and perspectives. J Food Sci Technol 1–23. https://doi.org/10.1007/s13197-023-05817-w

  11. Scopel BS, Restelatto D, Baldasso C, Dettmer A, Campomanes Santana RM (2020) Steam explosion in alkaline medium for gelatine extraction from chromium-tanned leather wastes: time reduction and process optimization. Environ Technol 41(14):1857–1866. https://doi.org/10.1080/09593330.2018.1551430

    Article  CAS  PubMed  Google Scholar 

  12. Scopel BS, Restelatto D, Baldasso C, Dettmer A, Santana RM (2019) Steam explosion as pretreatment to increase gelatin extraction yield from chromium tanned leather wastes. Environ Prog Sustain Energy 38(2):367–373. https://doi.org/10.1002/ep.12956

    Article  CAS  Google Scholar 

  13. Fu B, Mei S, Su X, Chen H, Zhu J, Zheng Z, Lin H, Dai C, Luque R, Yang DP (2021) Integrating waste fish scale-derived gelatin and chitosan into edible nanocomposite film for perishable fruits. Int J Biol Macromol 191:1164–1174. https://doi.org/10.1016/j.ijbiomac.2021.09.171

    Article  CAS  PubMed  Google Scholar 

  14. Gürdal AA, Çetinkaya T (2023) Advancements in edible films for aquatic product preservation and packaging. Reviews in Aquaculture. https://doi.org/10.1111/raq.12880

    Article  Google Scholar 

  15. Rigueto CVT, Nazari MT, Rosseto M, Massuda LA, Alessandretti I, Piccin JS, Dettmer A (2021) Emerging contaminants adsorption by beads from chromium (III) tanned leather waste recovered gelatin. J Mol Liq 330:115638. https://doi.org/10.1016/j.molliq.2021.115638

    Article  CAS  Google Scholar 

  16. Posgay M, Greff B, Kapcsándi V, Lakatos E (2022) Effect of Thymus vulgaris L. essential oil and thymol on the microbiological properties of meat and meat products: a review. Heliyon 8(10):e10812. https://doi.org/10.1016/j.heliyon.2022.e10812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. CLSI – Clinical and Laboratory Standards Institute (2016) Performance Standards for Antimicrobial Susceptibility Testing, 26th ed., Clinical and Laboratory Standards Institute: Wayne, PA, USA

  18. American Society for Testing and Materials (2002) ASTM D882: Standard Test Method for Tensile properties of Thin Plastic Sheeting. ASTM International

  19. Gómez-Estaca J, Montero P, Fernández-Martín F, Gómez-Guillén MC (2009) Physico-chemical and film-forming properties of bovine-hide and tuna-skin gelatin: a comparative study. J Food Eng 90(4):480–486. https://doi.org/10.1016/j.jfoodeng.2008.07.022

    Article  CAS  Google Scholar 

  20. American Society for Testing and Materials (2013) ASTM E9600: standard test methods for Water Vapor transmission of materials. ASTM International

  21. Gallego M, Arnal M, Talens P, Toldrá F, Mora L (2020) Effect of gelatin coating enriched with antioxidant tomato by-products on the quality of pork meat. Polymers 12(5):1032. https://doi.org/10.3390/polym12051032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cardoso GP, Dutra MP, Fontes PR, Ramos ADLS, de Miranda Gomide LA, Ramos EM (2016) Selection of a chitosan gelatin-based edible coating for color preservation of beef in retail display. Meat Sci 114:85–94. https://doi.org/10.1016/j.meatsci.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  23. International Organization for Standardization (2017) ISO 21528-2:2017. Microbiology of the food chain Horizontal method for the detection and enumeration of Enterobacteriaceae. Part 2: Colony-count technique ISO,

  24. International Organization for Standardization (2013) ISO 4833-1:2013. Microbiology of the food chain horizontal method for the enumeration of microorganisms. Part 1: colony count at 30°C by the pour plate technique. ISO

  25. Çetin B, Çakmakçi S, Cakmakci R (2011) The investigation of antimicrobial activity of thyme and oregano essential oils. Turkish J Agric Forestry 35(2):145–154. https://doi.org/10.3906/tar-0906-162

    Article  CAS  Google Scholar 

  26. Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, Gortzi O, Izadi M, Nabavi SM (2016) Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chem 210:402–414. https://doi.org/10.1016/j.foodchem.2016.04.111

    Article  CAS  PubMed  Google Scholar 

  27. Bernatová S, Samek O, Pilát Z, Šerý M, Ježek J, Jákl P, Šiler M, Krzyžánek V, Zemánek P, Holá V, Dvořáčková M, Růžička F (2013) Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. Molecules 18(11):13188–13199. https://doi.org/10.3390/molecules181113188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodríguez-Melcón C, Alonso-Calleja C, García-Fernández C, Carballo J, Capita R (2021) Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes. Biology 11(1):46. https://doi.org/10.3390/biology11010046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Santos LR, Alía A, Martin I, Gottardo FM, Rodrigues LB, Borges KA, Furian TQ, Córdoba JJ (2022) Antimicrobial activity of essential oils and natural plant extracts against Listeria monocytogenes in a dry-cured ham‐based model. J Sci Food Agric 102(4):1729–1735. https://doi.org/10.1002/jsfa.11475

    Article  CAS  PubMed  Google Scholar 

  30. Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 49(6):2474–2478. https://doi.org/10.1128/aac.49.6.2474-2478.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kavoosi G, Dadfar SMM, Purfard AM (2013) Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. J Food Sci 78(2):E244–E250. https://doi.org/10.1111/1750-3841.12015

    Article  CAS  PubMed  Google Scholar 

  32. Semeniuc CA, Pop CR, Rotar AM (2017) Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. J Food Drug Anal 25(2):403–408. https://doi.org/10.1016/j.jfda.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  33. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2(5):a000414. https://doi.org/10.1101/cshperspect.a000414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scartazzini L, Tosati JV, Cortez DHC, Rossi MJ, Flôres SH, Hubinger MD, Di Luccio M, Monteiro AR (2019) Gelatin edible coatings with mint essential oil (Mentha arvensis): Film characterization and antifungal properties. J Food Sci Technol 56:4045–4056. https://doi.org/10.1007/s13197-019-03873-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ahmad M, Benjakul S, Prodpran T, Agustini TW (2012) Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocolloids 28(1):189–199. https://doi.org/10.1016/j.foodhyd.2011.12.003

    Article  CAS  Google Scholar 

  36. Li X, Tu ZC, Sha XM, Ye YH, Li ZY (2020) Flavor, antimicrobial activity, and physical properties of composite film prepared with different surfactants. Food Sci Nutr 8(7):3099–3109. https://doi.org/10.1002/fsn3.1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Said NS, Sarbon NM (2022) Physical and mechanical characteristics of gelatin-based films as a potential food packaging material: a review. Membranes 12(5):442. https://doi.org/10.3390/membranes12050442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eysturskarð J, Haug IJ, Ulset AS, Draget KI (2009) Mechanical properties of mammalian and fish gelatins based on their weight average molecular weight and molecular weight distribution. Food Hydrocolloids 23(8):2315–2321. https://doi.org/10.1016/j.foodhyd.2009.06.007

    Article  CAS  Google Scholar 

  39. Gelita (2023) Gelatin know-how: gelling power Available at https://www.gelita.com/en/blog/amazinggelatin/gelatin-know-how-gelling-power Acessed in Nov. 04,

  40. Beraldo JC, Nogueira GF, Prata AS, Grosso CRF (2021) Effect of molar weight of gelatin in the coating of alginate microparticles. Polímeros 31(2):e2021018. https://doi.org/10.1590/0104-1428.20210027

    Article  Google Scholar 

  41. Kavoosi G, Rahmatollahi A, Dadfar SMM, Purfard AM (2014) Effects of essential oil on the water binding capacity, physico-mechanical properties, antioxidant and antibacterial activity of gelatin films. LWT - Food Science and Technology 57(2):556–561. https://doi.org/10.1016/j.lwt.2014.02.008

    Article  CAS  Google Scholar 

  42. Syafiq R, Sapuan SM, Zuhri MYM, Ilyas RA, Nazrin A, Sherwani SFK, Khalina A (2020) Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: a review. Polymers 12(10):2403. https://doi.org/10.3390/polym12102403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Y, Dutilleul P, Li C, Simpson BK (2019) Alcalase-assisted production of fish skin gelatin rich in high molecular weight (HMW) polypeptide chains and their characterization for film forming capacity. LWT - Food Science and Technology 110:117–125. https://doi.org/10.1016/j.lwt.2018.12.012

    Article  CAS  Google Scholar 

  44. Rawdkuen S, Sai-Ut S, Benjakul S (2010) Properties of gelatin films from giant catfish skin and bovine bone: a comparative study. Eur Food Res Technol 231:907–916. https://doi.org/10.1007/s00217-010-1340-5

    Article  CAS  Google Scholar 

  45. Kchaou H, Benbettaieb N, Jridi M, Nasri M, Debeaufort F (2019) Influence of Maillard reaction and temperature on functional, structure and bioactive properties of fish gelatin films. Food Hydrocolloids 97:105196. https://doi.org/10.1016/j.foodhyd.2019.105196

    Article  CAS  Google Scholar 

  46. Cetinkaya T, Bildik F, Altay F, Ceylan Z (2024) Gelatin nanofibers with black elderberry, au nanoparticles and SnO2 as intelligent packaging layer used for monitoring freshness of Hake fish. Food Chem 437:137843. https://doi.org/10.1016/j.foodchem.2023.137843

    Article  CAS  PubMed  Google Scholar 

  47. Razali NA, Conte M, McGregor J (2019) The role of impurities in the La 2 O 3 catalysed carboxylation of crude glycerol. Catal Lett 149:1403–1414. https://doi.org/10.1007/s10562-019-02679-w

    Article  CAS  Google Scholar 

  48. Nasr AM, Mortagi YI, Elwahab NHA, Alfaifi MY, Shati AA, Elbehairi SEI, Elshaarawy RFM, Kamal I (2022) Upgrading the transdermal biomedical capabilities of thyme essential oil nanoemulsions using amphiphilic oligochitosan vehicles. Pharmaceutics 14(7):1350. https://doi.org/10.3390/pharmaceutics14071350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mamun A, Rahman SM, Roland S, Mahmood R (2018) Impact of molecular weight on the thermal stability and the miscibility of poly (ε-caprolactone)/polystyrene binary blends. J Polym Environ 26:3511–3519. https://doi.org/10.1007/s10924-018-1236-1

    Article  CAS  Google Scholar 

  50. Du J, Dai H, Wang H, Yu Y, Zhu H, Fu Y, Ma L, Peng L, Li L, Wang Q, Zhang Y (2021) Preparation of high thermal stability gelatin emulsion and its application in 3D printing. Food Hydrocolloids 113:106536. https://doi.org/10.1016/j.foodhyd.2020.106536

    Article  CAS  Google Scholar 

  51. Vannan TE, Kumar B, Nirmala JP (2023) Formulation and characterization of film usingpolylactic acid and essential oil for packaging application. Int Res J Eng Technol 8(4):2265–2269. Available at https://www.irjet.net/archives/V8/i4/IRJET-V8I4424.pdf Acessed 27 Oct 2023

  52. Rosseto M, Rigueto CVT, Krein DDC, Massuda LA, Balbé NP, Colla LM, Dettmer A (2021) Combined effect of transglutaminase and phenolic extract of S pirulina platensis in films based on starch and gelatin recovered from chrome III tanned leather waste. Biofuels Bioprod Biorefin 15(5):1406–1420. https://doi.org/10.1002/bbb.2244

    Article  CAS  Google Scholar 

  53. Wang D, Cheng F, Wang Y, Han J, Gao F, Tian J, Zhang K, Jin Y (2022) The changes occurring in proteins during processing and storage of fermented meat products and their regulation by lactic acid bacteria. Foods 11(16):2427. https://doi.org/10.3390/foods11162427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sabzipour-Hafshejani F, Mirzapour-Kouhdasht A, Khodaei D, Taghizadeh MS, Garcia-Vaquero M (2022) Impact of whey protein Edible Coating containing fish gelatin hydrolysates on Physicochemical, Microbial, and sensory properties of Chicken breast fillets. Polymers 14(16):3371. https://doi.org/10.3390/polym14163371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brazil (2022) Normative Instruction - IN No. 161, of July 1, 2022. Microbiological standards of food Available at: https://www.in.gov.br/en/web/dou/-/instrucao-normativa-in-n-161-de-1-de-julho-de-2022-413366880 Accessed 11 Nov 2023

  56. Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:12. https://doi.org/10.3389/fmicb.2012.00012

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fathi-Achachlouei B, Babolanimogadam N, Zahedi Y (2021) Influence of anise (Pimpinella anisum L.) essential oil on the microbial, chemical, and sensory properties of chicken fillets wrapped with gelatin film. Food Sci Technol Int 27(2):123–134. https://doi.org/10.1177/1082013220935224

    Article  CAS  PubMed  Google Scholar 

  58. Hosseini SF, Rezaei M, Zandi M, Ghavi FF (2016) Effect of fish gelatin coating enriched with oregano essential oil on the quality of refrigerated rainbow trout fillet. J Aquat Food Prod Technol 25(6):835–842. https://doi.org/10.1080/10498850.2014.943917

    Article  CAS  Google Scholar 

  59. Andevari GT, Rezaei M (2011) Effect of gelatin coating incorporated with cinnamon oil on the quality of fresh rainbow trout in cold storage. Int J Food Sci Technol 46(11):2305–2311. https://doi.org/10.1111/j.1365-2621.2011.02750.x

    Article  CAS  Google Scholar 

  60. Ouattara B, Sabato SF, Lacroix M (2001) Combined effect of antimicrobial coating and gamma irradiation on shelf life extension of pre-cooked shrimp (Penaeus spp). Int J Food Microbiol 68(1–2):1–9. https://doi.org/10.1016/S0168-1605(01)00436-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Coordination for the Improvement of Higher Education Personnel (CAPES) – Finance Code 001, Research Support Foundation of the State of Rio Grande do Sul (FAPERGS) Proc. 21/2551-0002144-6, and the Research Support Foundation of the State of Mato Grosso (FAPEMAT).

Funding

The authors reported no funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

C.V.T. Rigueto: Project administration, Investigation, Data curation, Writing-Original draft preparation, and Writing-Reviewing and Editing; G. Vasconcelos: Investigation and Data curation; M.Rosseto: Writing-Original draft preparation; D.D.C. Krein: Investigation; Fernanda Oliveira: Investigation; C.P. Freitas: Investigation; C.A. Nascimento: Investigation; L.R. Santos: Resources; R.A. Loss: Resources, Funding acquisition, and Visualization; A. Dettmer: Resources; Supervision, and Writing-Reviewing and Editing, and Funding acquisition; I.R. Pizzutti: Supervision and Visualization.

Corresponding authors

Correspondence to Cesar Vinicius Toniciolli Rigueto, Aline Dettmer or Ionara Regina Pizzutti.

Ethics declarations

Ethical Approval

This study does not involve any human or animal testing.

Consent to Participate

Not applicable.

Consent for publication

All authors agree to publish this draft.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigueto, C.V.T., de Vasconcelos, G., Rosseto, M. et al. Composite Films from Steam-exploded Gelatin and Thyme Essential Oil: Production, Characterization and Application as Coatings. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03185-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03185-w

Keywords

Navigation