Skip to main content
Log in

Turning Thermocol Waste into a Highly Efficient Carbon Composite as an Interfacial Solar Thermal Evaporator

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Solar thermal interfacial evaporation is a cutting-edge method that has been recently developed to produce fresh water using sunlight. Herein, an incredibly robust, cost-effective and highly durable polystyrene-activated carbon-polyurethane foam (PSC) composite fabricated as an efficient solar thermal evaporator (STE). It offers a high evaporation rate of 1.70 kg m− 2 h− 1 with excellent photothermal efficiency under one sun illumination (1 kW m− 2). Due to its porous nature, PSC-STE has excellent dye water, salt water, and highly dense muddy water filtering ability, confirmed using UV-visible spectroscopy. A 0.16 m2 solar still was constructed to show the device’s performance under natural solar irradiation conditions. With natural solar irradiation of less than 0.8 kW m− 2, the solar still generates approximately 280–340 ml of fresh water within 6–7 h a day. Moreover, the device shows excellent purification properties of highly contaminated water of 710 ppm to 12 ppm. As a result, the non-decomposable waste polystyrene, converted into this valuable, cost-effective, and highly stable PSC solar-driven evaporator, can be employed as a long-term approach for highly clean water production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tao P, Ni G, Song C et al (2018) Solar-driven interfacial evaporation. Nat Energy 3:1031–1041. https://doi.org/10.1038/s41560-018-0260-7

    Article  Google Scholar 

  2. Zhang J, Li Z, Meng T et al (2022) Monolithic all-weather solar-thermal interfacial membrane evaporator. Chem Eng J 450:137893. https://doi.org/10.1016/j.cej.2022.137893

    Article  CAS  Google Scholar 

  3. Shen H, Zheng Z, Liu H, Wang X (2022) A solar-powered interfacial evaporation system based on MoS2-decorated magnetic phase-change microcapsules for sustainable seawater desalination. J Mater Chem A 10:25509–25526. https://doi.org/10.1039/D2TA07353F

    Article  CAS  Google Scholar 

  4. Li Z, Wang C, Su J et al (2019) Fast-growing field of Interfacial Solar Steam Generation: Evolutional materials, Engineered architectures, and synergistic applications. Sol RRL 3:1–19. https://doi.org/10.1002/solr.201800206

    Article  Google Scholar 

  5. Han X, Besteiro LV, Koh CSL et al (2021) Intensifying heat using MOF-Isolated graphene for solar-driven seawater desalination at 98% solar-to-thermal efficiency. Adv Funct Mater 31:1–7. https://doi.org/10.1002/adfm.202008904

    Article  CAS  Google Scholar 

  6. Tang S, Lu X, Geng P et al (2023) A non-covalent supramolecular dual-network polyelectrolyte evaporator based on direct-ink-writing for stable solar thermal evaporation. Mater Adv 4:223–230. https://doi.org/10.1039/D2MA00927G

    Article  CAS  Google Scholar 

  7. Zhu L, Gao M, Peh CKN, Ho GW (2019) Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy 57:507–518. https://doi.org/10.1016/j.nanoen.2018.12.046

    Article  CAS  Google Scholar 

  8. Lal S, Batabyal SK (2022) Activated carbon-cement composite coated polyurethane foam as a cost-efficient solar steam generator. J Clean Prod 379:134302. https://doi.org/10.1016/j.jclepro.2022.134302

    Article  CAS  Google Scholar 

  9. Shi L, Wang X, Hu Y et al (2020) Solar-thermal conversion and steam generation: a review. Appl Therm Eng 179:115691. https://doi.org/10.1016/j.applthermaleng.2020.115691

    Article  CAS  Google Scholar 

  10. Tawalbeh M, Qalyoubi L, Al-Othman A et al (2023) Insights on the development of enhanced antifouling reverse osmosis membranes: industrial applications and challenges. Desalination 553:116460. https://doi.org/10.1016/j.desal.2023.116460

    Article  CAS  Google Scholar 

  11. Arana Juve J-M, Christensen FMS, Wang Y, Wei Z (2022) Electrodialysis for metal removal and recovery: a review. Chem Eng J 435:134857. https://doi.org/10.1016/j.cej.2022.134857

    Article  CAS  Google Scholar 

  12. Strathmann H (1995) Chap. 6 Electrodialysis and related processes. In: Noble RD, Stern SABT-MS and T (eds) Membrane separations technology. Elsevier, pp 213–281

  13. Moossa B, Trivedi P, Saleem H, Zaidi SJ (2022) Desalination in the GCC countries- a review. J Clean Prod 357:131717. https://doi.org/10.1016/j.jclepro.2022.131717

    Article  CAS  Google Scholar 

  14. Shalaby SM, Kabeel AE, Abosheiasha HF et al (2022) Membrane distillation driven by solar energy: a review. J Clean Prod 366:132949. https://doi.org/10.1016/j.jclepro.2022.132949

    Article  CAS  Google Scholar 

  15. Irshad MS, Hao Y, Arshad N et al (2023) Highly charged solar evaporator toward sustainable energy transition for in-situ freshwater & power generation. Chem Eng J 458. https://doi.org/10.1016/j.cej.2023.141431

  16. Irshad MS, Arshad N, Zhang J et al (2023) Wormlike Perovskite Oxide coupled with phase-change material for all-Weather Solar Evaporation and Thermal Storage Applications. Adv Energy Sustain Res 4:1–13. https://doi.org/10.1002/aesr.202200158

    Article  CAS  Google Scholar 

  17. Irshad MS, Wang X, Abbas A et al (2021) Salt-resistant carbon dots modified solar steam system enhanced by chemical advection. Carbon N Y 176:313–326. https://doi.org/10.1016/j.carbon.2021.01.140

    Article  CAS  Google Scholar 

  18. Neumann O, Urban AS, Day J et al (2013) Solar Vapor Generation enabled by Nanoparticles. ACS Nano 7:42–49. https://doi.org/10.1021/nn304948h

    Article  CAS  PubMed  Google Scholar 

  19. Ni G, Miljkovic N, Ghasemi H et al (2015) Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17:290–301. https://doi.org/10.1016/j.nanoen.2015.08.021

    Article  CAS  Google Scholar 

  20. Luo X, Shi J, Zhao C et al (2021) The energy efficiency of interfacial solar desalination. Appl Energy 302:117581. https://doi.org/10.1016/j.apenergy.2021.117581

    Article  Google Scholar 

  21. Shi C, Zhang X, Nilghaz A et al (2023) Large-scale production of spent coffee ground-based photothermal materials for high-efficiency solar-driven interfacial evaporation. Chem Eng J 455:140361. https://doi.org/10.1016/j.cej.2022.140361

    Article  CAS  Google Scholar 

  22. Soo Joo B, Soo Kim I, Ki Han I et al (2022) Plasmonic silicon nanowires for enhanced heat localization and interfacial solar steam generation. Appl Surf Sci 583:152563. https://doi.org/10.1016/j.apsusc.2022.152563

    Article  CAS  Google Scholar 

  23. Wu J, Li X, Zhang T et al (2022) All-weather-available electrothermal and solar–thermal wood-derived porous carbon-based steam generators for highly efficient water purification. Mater Chem Front 6:306–315. https://doi.org/10.1039/D1QM01544C

    Article  CAS  Google Scholar 

  24. Yu S, Gu Y, Chao X et al (2023) Recent advances in interfacial solar vapor generation: clean water production and beyond. J Mater Chem A 11:5978–6015. https://doi.org/10.1039/D2TA10083E

    Article  CAS  Google Scholar 

  25. Fillet R, Nicolas V, Fierro V, Celzard A (2021) A review of natural materials for solar evaporation. Sol Energy Mater Sol Cells 219:110814. https://doi.org/10.1016/j.solmat.2020.110814

    Article  CAS  Google Scholar 

  26. Shi L, Wang Y, Zhang L, Wang P (2017) Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. J Mater Chem A 5:16212–16219. https://doi.org/10.1039/c6ta09810j

    Article  CAS  Google Scholar 

  27. Wang G, Fu Y, Ma X et al (2017) Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation. Carbon N Y 114:117–124. https://doi.org/10.1016/j.carbon.2016.11.071

    Article  CAS  Google Scholar 

  28. Ghasemi H, Ni G, Marconnet AM et al (2014) Solar steam generation by heat localization. Nat Commun 5:1–7. https://doi.org/10.1038/ncomms5449

    Article  CAS  Google Scholar 

  29. Lal S, Batabyal SK (2023) Ambient evaporation-induced electricity generation in activated carbon-water interfaced three-dimensional hydrovoltaic device. J Power Sources 568:232951. https://doi.org/10.1016/j.jpowsour.2023.232951

    Article  CAS  Google Scholar 

  30. Chen W, Hao H, Hughes D et al (2015) Static and dynamic mechanical properties of expanded polystyrene. Mater Des 69:170–180. https://doi.org/10.1016/j.matdes.2014.12.024

    Article  CAS  Google Scholar 

  31. Taylor P, Maharana T, Negi YS, Mohanty B (2007) Polymer-Plastics Technology and Engineering Review article. Recycling of Polystyrene Review Article: Recycling of Polystyrene 37–41. https://doi.org/10.1080/03602550701273963

  32. Uttaravalli AN, Dinda S, Gidla BR (2020) Scientific and engineering aspects of potential applications of post-consumer (waste) expanded polystyrene: a review. Process Saf Environ Prot 137:140–148. https://doi.org/10.1016/j.psep.2020.02.023

    Article  CAS  Google Scholar 

  33. Dement’ev KI, Bedenko SP, Minina YD et al (2023) Catalytic Pyrolysis of Polystyrene Waste in Hydrocarbon Medium. Polymers (Basel). 15

  34. Kim DH, Jeong JH, Woo HC, Kim MH (2021) Synthesis of highly porous polymer microspheres with interconnected open pores for catalytic microreactors. Chem Eng J 420:127628. https://doi.org/10.1016/j.cej.2020.127628

    Article  CAS  Google Scholar 

  35. Kim DH, Jeong JH, Woo H-C, Kim MH (2021) Synthesis of highly porous polymer microspheres with interconnected open pores for catalytic microreactors. Chem Eng J 420:127628. https://doi.org/10.1016/j.cej.2020.127628

    Article  CAS  Google Scholar 

  36. Farma R, Fatjrin D, Awitdrus, Deraman M (2017) Physical properties of activated carbon from fibers of oil palm empty fruit bunches by microwave assisted potassium hydroxide activation. AIP Conf Proc 1801:40001. https://doi.org/10.1063/1.4973090

    Article  Google Scholar 

  37. Daud FN, Ahmad A, Haji Badri K (2014) An investigation on the properties of Palm-based polyurethane solid polymer Electrolyte. Int J Polym Sci 2014:326716. https://doi.org/10.1155/2014/326716

    Article  CAS  Google Scholar 

  38. Chavan V, Anandraj J, Joshi GM, Cuberes MT (2017) Structure, morphology and electrical properties of graphene oxide: CuBiS reinforced polystyrene hybrid nanocomposites. J Mater Sci Mater Electron 28:16415–16425. https://doi.org/10.1007/s10854-017-7552-8

    Article  CAS  Google Scholar 

  39. Fang J, Xuan Y, Li Q (2010) Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals. Sci China Technol Sci 53:3088–3093. https://doi.org/10.1007/s11431-010-4110-5

    Article  CAS  Google Scholar 

  40. Saka C BET, TG–DTG, FT-IR (2012) SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J Anal Appl Pyrolysis 95:21–24. https://doi.org/10.1016/j.jaap.2011.12.020

  41. Chafidz A, Astuti W, Augustia V et al (2018) Removal of methyl violet dye via adsorption using activated carbon prepared from Randu sawdust (Ceiba pentandra). IOP Conf Ser Earth Environ Sci 167. https://doi.org/10.1088/1755-1315/167/1/012013

  42. Mohammadi A, Barikani M, Barmar M (2014) Synthesis and investigation of thermal and mechanical properties of in situ prepared biocompatible Fe3O4/polyurethane elastomer nanocomposites. Polym Bull. https://doi.org/10.1007/s00289-014-1268-1

    Article  Google Scholar 

  43. Donoso JP, Tambelli CE, Silva I (2010) Nuclear magnetic resonance study of Hydrated Bentonite. Nuclear Magn Reson Study Hydrated Bentonite. https://doi.org/10.1080/15421401003723219

    Article  Google Scholar 

  44. Hachani S, Wis A, Necira Z et al (2018) Effects of Magnesia Incorporation on Properties of Polystyrene/Magnesia Composites. Acta Chim Slov 65. https://doi.org/10.17344/acsi.2018.4305

  45. Liu F, Gu Y, Hu Y et al (2023) Freestanding ultrathin precisely structured hierarchical porous Carbon Blackbody Film for efficient solar interfacial evaporation. Sol RRL 7:1–10. https://doi.org/10.1002/solr.202200803

    Article  CAS  Google Scholar 

  46. Xu C, Gao M, Yu X et al (2023) Fibrous aerogels with tunable superwettability for high-performance solar-driven interfacial evaporation. Nano-Micro Lett 15:1–18. https://doi.org/10.1007/s40820-023-01034-4

    Article  CAS  Google Scholar 

  47. Chang MJ, Zhu WY, Wang H et al (2023) Patterned nanofibrous membrane via hot-pressing for enhanced solar thermal evaporation. Mater Chem Phys 302:127727. https://doi.org/10.1016/j.matchemphys.2023.127727

    Article  CAS  Google Scholar 

  48. Zhang X, Yan Y, Li N et al (2023) A robust and 3D-printed solar evaporator based on naturally occurring molecules. Sci Bull 68:203–213. https://doi.org/10.1016/j.scib.2023.01.017

    Article  CAS  Google Scholar 

  49. Cong M, Wang F, Zhang Y et al (2023) An array structure of polydopamine/wood solar interfacial evaporator for high-efficiency water generation and desalination. Sol Energy Mater Sol Cells 249:112052. https://doi.org/10.1016/j.solmat.2022.112052

    Article  CAS  Google Scholar 

  50. Wu YG, Xue CH, Guo XJ et al (2023) Highly efficient solar-driven water evaporation through a cotton fabric evaporator with wettability gradient. Chem Eng J 471:144313. https://doi.org/10.1016/j.cej.2023.144313

    Article  CAS  Google Scholar 

  51. Lal S, Batabyal SK (2022) Potato-based microporous carbon cake: solar radiation induced water treatment. J Environ Chem Eng 10:108502. https://doi.org/10.1016/j.jece.2022.108502

    Article  CAS  Google Scholar 

  52. Irshad MS, Wang X, Arshad N et al (2022) Bifunctional in situ polymerized nanocomposites for convective solar desalination and enhanced photo-thermoelectric power generation. Environ Sci Nano 1685–1698. https://doi.org/10.1039/d1en01018b

  53. Irshad MS, Wang X, Abbasi MS et al (2021) Semiconductive, flexible MnO2NWs/Chitosan hydrogels for efficient solar steam generation. ACS Sustain Chem Eng 9:3887–3900. https://doi.org/10.1021/acssuschemeng.0c08981

    Article  CAS  Google Scholar 

  54. Olszak N What is the pH of DI Water? | Complete Water Solutions. https://complete-water.com/resources/what-is-the-ph-of-di-water

  55. Young E Don’t drink a drop until you know the TDS in your water | RO-System.org. https://www.ayurtimes.com/minimum-maximum-acceptable-tds-level-drinking-water/

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.P. and S.L. performed the experiment, analyzed the data, and wrote the original draft of the main manuscript. S.K.B. designed the research problem and methododlogy, supervised the project and edited the final version of the manuscript.

Corresponding author

Correspondence to Sudip K. Batabyal.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisharody, G., Lal, S. & Batabyal, S.K. Turning Thermocol Waste into a Highly Efficient Carbon Composite as an Interfacial Solar Thermal Evaporator. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03181-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03181-6

Keywords

Navigation