Skip to main content
Log in

Sustainable Production of Hierarchically Porous Carbon from Lignin-Acrylic Acid Copolymers

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Microporous carbon adsorbents with high surface area and porosity were synthesized from lignin using an acrylic acid pretreatment strategy. Lignin was grafted with acrylic acid via hydrothermal treatment to introduce carboxyl groups, as verified by NMR and FT-IR spectroscopy. The incorporated carboxyls enabled ion exchange reactions between lignin and potassium during subsequent potassium hydroxide (KOH) activation. This optimized the dispersion of potassium, allowing effective activation even at low KOH levels. The effects of process parameters, including acrylic acid content, hydrothermal time, and KOH ratio, were investigated. Optimal conditions of 5 wt% acrylic acid and 6 h hydrothermal reaction produced a carbon adsorbent with exceptional Brunauer–Emmett–Teller (BET) surface area of 1708 m2/g and pore volume of 0.82 cm3/g at a lignin:KOH:acrylic acid ratio of 1:0.5:0.05. Characterization by FE-SEM, XRD, EDS, and Raman spectroscopy confirmed the successful synthesis of an optimized microporous carbon material. The carbon exhibited an outstanding lead ion adsorption capacity of 371 mg/g by Langmuir modeling. Adsorption kinetics followed pseudo-second-order, indicating chemisorption as the rate-controlling step. Thermodynamic analysis revealed the endothermic nature of lead adsorption, further enhanced at higher temperatures. Overall, the acrylic acid pretreatment approach enabled sustainable production of high surface area microporous carbon adsorbents from lignin using minimal KOH activation. The adsorbents demonstrated tremendous potential for removing lead ions via chemisorption mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Xu X, Nie S, Ding H, Hou FF (2018) Nat Rev Nephrol 14(5):313–324

    Article  CAS  PubMed  Google Scholar 

  2. He S, Shi G, Xiao H, Sun G et al (2021) Chem Eng J 410:128286

    Article  CAS  Google Scholar 

  3. Li Y, He J, Zhang K, Liu T et al (2019) RSC Adv 9(1):397–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mariana M, Abdul Khalil HPS, Mistar E, Yahya EB, Alfatah T, Danish M, Amayreh M (2021) J Water Process Eng 43:102221

    Article  Google Scholar 

  5. Shahadat M, Isamil S (2018) RSC Adv 8(43):24571–24587

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zagho MM, Hassan MK, Khraisheh M, Al-Maadeed MAA et al (2021) Chem Eng J Adv 6:100091

    Article  CAS  Google Scholar 

  7. Carrott P, Carrott MR (2007) Bioresour Technol 98(12):2301–2312

    Article  PubMed  Google Scholar 

  8. Yorgun S, Vural N, Demiral H (2009) Microporous Mesoporous Mater 122(1–3):189–194

    Article  CAS  Google Scholar 

  9. Lillo-Ródenas M, Cazorla-Amorós D, Linares-Solano A (2003) Carbon 41(2):267–275

    Article  Google Scholar 

  10. Gao Y, Yue Q, Gao B, Li A (2020) Sci Total Environ 746:141094

    Article  CAS  PubMed  Google Scholar 

  11. Varila T, Bergna D, Lahti R, Romar H, Hu T, Lassi U (2017) BioResources 12(4):8078–8092

    Article  CAS  Google Scholar 

  12. Tan Y, Wang X, Xiong F, Ding J, Qing Y, Wu Y (2021) Ind Crops Prod 171:113980

    Article  CAS  Google Scholar 

  13. Heidarinejad Z, Dehghani MH, Heidari M, Javedan G, Ali I, Sillanpää M (2020) Environ Chem Lett 18(2):393–415

    Article  CAS  Google Scholar 

  14. Han Q, Wang J, Goodman BA, Xie J, Liu Z (2020) J Powder Technol 366:239–248

    Article  CAS  Google Scholar 

  15. Nayak A, Bhushan B, Gupta V, Sharma P (2017) J Colloid Interf Sci 493:228–240

    Article  CAS  Google Scholar 

  16. Zhang N, Shen Y (2019) Bioresour Technol 284:325–332

    Article  CAS  PubMed  Google Scholar 

  17. Ashori A, Menbari S, Bahrami R (2016) Ind Eng Chem 38(8):37–42

    Article  CAS  Google Scholar 

  18. Sevilla M, Mokaya R (2014) Energy Environ Sci 7(4):1250–1280

    Article  CAS  Google Scholar 

  19. Chiu Y-H, Lin L-Y (2019) J Taiwan Inst Chem Eng 101:177–185

    Article  CAS  Google Scholar 

  20. Njoku V, Foo K, Asif M, Hameed B (2014) Chem Eng J 250:198–204

    Article  CAS  Google Scholar 

  21. Wu F-C, Wu P-H, Tseng R-L, Juang R-S (2010) J Environ Manage 91(5):1097–1102

    Article  CAS  PubMed  Google Scholar 

  22. Chayid MA, Ahmed MJ (2015) J Environ Chem Eng 3(3):1592–1601

    Article  CAS  Google Scholar 

  23. Wang B, Zhu C, Zhang Z, Zhang W et al (2016) Fuel 179:274–280

    Article  CAS  Google Scholar 

  24. Ludwinowicz J, Jaroniec M (2015) Carbon 82:297–303

    Article  CAS  Google Scholar 

  25. Liu Z, Zhang Z, Jia Z, Zhao L et al (2018) Chem Eng J 337:290–299

    Article  CAS  Google Scholar 

  26. Dessbesell L, Paleologou M, Leitch M, Pulkki R, Xu CC (2020) Renew Sust Energy Rev 123:109768

    Article  CAS  Google Scholar 

  27. Liu H, Xu T, Liu K, Zhang M, Liu W, Li H, Du H, Si C (2021) Ind Crops Prod 165:113425

    Article  CAS  Google Scholar 

  28. Liu Y, Jin C, Yang Z, Wu G, Liu G, Kong Z (2021) Int J Biol Macromol 187:880–891

    Article  CAS  PubMed  Google Scholar 

  29. Sun J, Wang C, Stubbs LP, He C (2017) Macromol Mater Eng 302(12):1700341

    Article  Google Scholar 

  30. Kong F, Wang S, Gao W, Fatehi P (2018) RSC Adv 8(22):12322–12336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kinoshita K, Takano Y, Ohkouchi N, Deguchi S (2017) ACS Omega 2(6):2765–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu Z, Wan X, Wang Q, Tian D, Hu J, Huang M, Shen F, Zeng Y (2021) Renew Sust Energy Rev 50:111503

    Article  Google Scholar 

  33. Zhang Z, Wang T, Zhang H, Liu Y, Xing B (2021) Sci Total Environ 757:143910

    Article  CAS  PubMed  Google Scholar 

  34. Bian Y, Bian Z, Zhang J, Ding A, Liu S, Zheng L, Wang H (2015) Chin J Chem Eng 23(10):1705–1711

    Article  CAS  Google Scholar 

  35. Asuquo E, Martin A, Nzerem P, Siperstein F, Fan X (2017) J Environ Chem Eng 5(1):679–698

    Article  CAS  Google Scholar 

Download references

Funding

This work is based upon research funded by Iran National Science Foundation (INSF) under project No. 99008793.

Author information

Authors and Affiliations

Authors

Contributions

RP: investigation, methodology, formal analysis, visualization, validation. AA: investigation, methodology, formal analysis, visualization, supervision, validation. AR : supervision, conceptualization, methodology, validation, resources. AA: validation, writing—original draft preparation, writing—review and editing. AB: methodology and validation. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Alireza Ashori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

None.

Research Involving Human and Animal Rights

This article does not contain any studies involving animals or human participants performed.

by any of the authors.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourbaba, R., Abdulkhani, A., Rashidi, A. et al. Sustainable Production of Hierarchically Porous Carbon from Lignin-Acrylic Acid Copolymers. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03177-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03177-2

Keywords

Navigation