Skip to main content

Advertisement

Log in

Nitrogen-doped nanoporous carbons derived from lignin for high CO2 capacity

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

In this paper, nitrogen (N)-doped ultra-porous carbon derived from lignin is synthesized through hydrothermal carbonization, KOH activation, and post-doping process for CO2 adsorption. The specific surface areas of obtained N-doped porous carbons range from 247 to 3064 m2/g due to a successful KOH activation. N-containing groups of 0.62–1.17 wt% including pyridinic N, pyridone N, pyridine-N-oxide are found on the surface of porous carbon. N-doped porous carbon achieves the maximum CO2 adsorption capacity of 13.6 mmol/g at 25 °C up to 10 atm and high stability over 10 adsorption/desorption cycles. As confirmed by enthalpy calculation with the Clausius–Clapeyron equation, an adsorption heat of N-doped porous carbon is higher than non-doped porous carbon, indicating a role of N functionalities for enhanced CO2 adsorption capability. The overall results suggest that this carbon has high CO2 capture capacity and can be easily regenerated and reused without any clear loss of CO2 adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hao GP, Li WC, Qian D, Lu AH (2010) Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Adv Mater 22:853

    Article  Google Scholar 

  2. Rahman FA, Aziz MMA, Saidur R, Bakar WAWA, Hainin MR, Putrajaya R, Hassan NA (2017) Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renew Sustain Energy Rev 71:112

    Article  Google Scholar 

  3. Seema H, Kemp KC, Le NH, Park S-W, Chandra V, Lee JW, Kim KS (2014) Highly selective CO2 capture by S-doped microporous carbon materials. Carbon 66:320

    Article  Google Scholar 

  4. Zhuo H, Hu Y, Tong X, Zhong L, Peng X, Sun R (2016) Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Ind Crops Prod 87:229

    Article  Google Scholar 

  5. Chen C, Park D-W, Ahn W-S (2014) CO2 capture using zeolite 13X prepared from bentonite. Appl Surf Sci 292:63

    Article  Google Scholar 

  6. Verdegaal WM, Wang K, Sculley JP, Wriedt M, Zhou H-C (2016) Evaluation of metal-organic frameworks and porous polymer networks for CO2-capture applications. Chemsuschem 9:636

    Article  Google Scholar 

  7. Zhu X, Do-Thanh C-L, Murdock CR, Nelson KM, Tian C, Brown S, Mahurin SM, Jenkins DM, Hu J, Zhao B, Liu H, Dai S (2013) Efficient CO2capture by a 3D porous polymer derived from Tröger’s base. ACS Macro Lett 2:660

    Article  Google Scholar 

  8. Chen J, Yang J, Hu G, Hu X, Li Z, Shen S, Radosz M, Fan M (2016) Enhanced CO2 capture cof nitrogen-doped biomass-derived porous carbons. ACS Sustain Chem Eng 4:1439

    Article  Google Scholar 

  9. Plaza MG, González AS, Pis JJ, Rubiera F, Pevida C (2014) Production of microporous biochars by single-step oxidation: effect of activation conditions on CO2 capture. Appl Energy 114:551

    Article  Google Scholar 

  10. Sethia G, Sayari A (2015) Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 captur. Carbon 93:68

    Article  Google Scholar 

  11. Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhuo S, Yan Z, Gao H, Wang G, Qiao SZ (2012) Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ Sci 5:7323

    Article  Google Scholar 

  12. Saha D, Van Bramer SE, Orkoulas G, Ho H-C, Chen J, Henley DK (2017) CO2 capture in lignin-derived and nitrogen-doped hierarchical porous carbons. Carbon 121:257

    Article  Google Scholar 

  13. Sevilla M, Parra JB, Fuertes AB (2013) Assessment of the role of micropore sand N-doping in CO2 capture by porous carbons. ACS Appl Mater Interfaces 5:6360

    Article  Google Scholar 

  14. González AS, Plaza MG, Rubiera F, Pevida C (2013) Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture. Chem Eng J 230:456

    Article  Google Scholar 

  15. Huang Y-F, Chiueh P-T, Shih C-H, Lo S-L, Sun L, Zhong Y, Qiu C (2015) Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. Energy 84:75

    Article  Google Scholar 

  16. Ello AS, de Souza LKC, Trokourey A, Jaroniec M (2013) Coconut shell-based microporous carbons for CO2 capture. Microporous Mesoporous Mater 180:280

    Article  Google Scholar 

  17. Hao W, Björkman E, Lilliestråle M, Hedin N (2013) Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2. Appl Energy 112:526

    Article  Google Scholar 

  18. Bae J-S, Su S (2013) Macadamia nut shell-derived carbon composites for post combustion CO2 capture. Int J Greenh Gas Control 19:174

    Article  Google Scholar 

  19. Zhu B, Shang C, Guo Z (2016) Naturally nitrogen and calcium-doped nanoporous carbon from pine cone with superior CO2 capture capacities. ACS Sustain Chem Eng 4:1050

    Article  Google Scholar 

  20. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:1126

    Article  Google Scholar 

  21. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4:160

    Article  Google Scholar 

  22. Lucian M, Fiori L (2017) Hydrothermal carbonization of waste biomass: process design, modeling, energy and cost analysis. Energies 10:211

    Article  Google Scholar 

  23. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710

    Article  Google Scholar 

  24. Sun F, Gao J, Liu X, Pi X, Yang Y, Wu S (2016) Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials. Appl Surf Sci 387:857

    Article  Google Scholar 

  25. Yu H, Roller JM, Mustain WE, Maric R (2015) Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology. J Power Sources 283:84

    Article  Google Scholar 

  26. Etacheri V, Wang C, O’Connell MJ, Chan CK, Pol VG (2015) Porous carbon sphere anodes for enhanced lithium-ion storage. J Mater Chem A 3:9861

    Article  Google Scholar 

  27. Choi MS, Park S, Lee H, Park HS (2018) Hierarchically nanoporous carbons derived from empty fruit bunches for high performance supercapacitors. Carbon Lett 25:103

    Google Scholar 

  28. Li B, Dai F, Xiao Q, Yang L, Shen J, Zhang C, Cai M (2016) Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci 9:102

    Article  Google Scholar 

  29. Ma X, Cao M, Hu C (2013) Bifunctional HNO3 catalytic synthesis of N-doped porous carbons for CO2 capture. J Mater Chem A 1:913

    Article  Google Scholar 

  30. Li Y, Wang G, Wei T, Fan Z, Yan P (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165

    Article  Google Scholar 

  31. Wu Z-S, Parvez K, Winter A, Vieker H, Liu X, Han S, Turchanin A, Feng X, Müllen K (2014) Layer-by-Layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors. Adv Mater 26:4552

    Article  Google Scholar 

  32. Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12:1806

    Article  Google Scholar 

  33. Lim G, Lee KB, Ham HC (2016) Effect of N-containing functional groups on CO2 adsorption of carbonaceous materials: a density functional theory approach. J Phys Chem C 120:8087

    Article  Google Scholar 

  34. Chen C, Ahn W-S (2011) CO2 capture using mesoporous alumina prepared by a sol–gel process. Chem Eng J 166:646

    Article  Google Scholar 

  35. Zhang S, Li Z, Ueno K, Tatara R, Dokko K, Watanabe M (2015) One-step, template-free synthesis of highly porous nitrogen/sulfur-codoped carbons from a single protic salt and their application to CO2 capture. J Mater Chem A 3:17849

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by both the National Research Foundation (NRF) funded by the Ministry of Science, ICT, and Future Planning (No. 2017M2A2A6A01021187), and the Energy Technology Development Project (ETDP) funded by the Ministry of Trade, Industry, and Energy (20172410100150), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Seok Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 744 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Choi, M. & Park, H. Nitrogen-doped nanoporous carbons derived from lignin for high CO2 capacity. Carbon Lett. 29, 289–296 (2019). https://doi.org/10.1007/s42823-019-00025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00025-z

Keywords

Navigation