Skip to main content
Log in

The Impact of Temperature on the Formation, Release Mechanism, and Degradation of PLGA-based In-Situ Forming Implants

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study explores the impact of varying temperatures on the release behavior of Triptorelin Acetate (TA) from a PLGA-based in-situ forming implant (ISFI) and polymer degradation. Formulations were prepared using the in situ forming method in an acetate buffer (pH = 6.8) and then exposed to temperatures of 4 to 60 °C. The drug release and polymeric depot behavior were evaluated using HPLC, SEM, GPC, Rheometer, and pH measurements. A modified Gallagher-Corrigan Model-based mathematical model was applied to fit the in-vitro data, and the activation energy for peptide release in diffusional and erosional phases was calculated using the Arrhenius equation. The results revealed that matrices formed at 37, 45, and 53 °C exhibited a highly porous structure, resulting from rapid phase inversion and surface pore closing. This led to a reduction in TA burst release, observed as 38%, 27%, and 15% at 37 °C, 45 °C, and 53 °C respectively. Conversely, matrices at 4 and 25 °C demonstrated a faster initial release, followed by the formation of dense structures. The accelerated drug release profiles at 45 and 53 °C showed a shortened ultimate drug release duration and a good correlation with the real-time results at 37 °C. Due to the discernible PLGA matrices degradation at different temperatures, biphasic and tri-phasic release patterns were observed. The experimental release results aligned well with the proposed mathematical model, and the drug release kinetic parameters were estimated. Thus, in in-vitro studies, the release medium temperature plays a significant role in the drug-release behavior of ISFIs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhang Q, Fassihi R (2020) Release rate determination from in situ gel forming PLGA implant: a novel ‘shape-controlled basket in tube’ method. J Pharm Pharmacol 72(8):1038–1048. https://doi.org/10.1111/jphp.13277

    Article  CAS  PubMed  Google Scholar 

  2. Park K, Skidmore S, Hadar J, Garner J, Park H, Otte A, Soh BK, Yoon G, Yu D, Yun Y, Lee BK, Jiang X, Wang Y (2019) Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. J Control Release 304:125–134. https://doi.org/10.1016/j.jconrel.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  3. Elmowafy EM, Tiboni M, Soliman ME (2019) Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J Pharm Invest 49(4):347–380. https://doi.org/10.1007/s40005-019-00439-x

    Article  CAS  Google Scholar 

  4. R.L.D.J.P.E.D.R.C.D P, Vanderbilt (1999) Biodegradable in-situ forming implants and methods of producing the same in: U.S. Patent (Ed.)

  5. Ibrahim TM, El-Megrab NA, El-Nahas HM (2021) An overview of PLGA in-situ forming implants based on solvent exchange technique: effect of formulation components and characterization. Pharm Dev Technol 26(7):709–728. https://doi.org/10.1080/10837450.2021.1944207

    Article  CAS  PubMed  Google Scholar 

  6. Dimatteo R, Darling NJ, Segura T (2018) In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliv Rev 127:167–184. https://doi.org/10.1016/j.addr.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parent M, Nouvel C, Koerber M, Sapin A, Maincent P, Boudier A (2013) PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release. J Control Release 172(1):292–304. https://doi.org/10.1016/j.jconrel.2013.08.024

    Article  CAS  PubMed  Google Scholar 

  8. Janagam DR, Wang L, Ananthula S, Johnson JR, Lowe TL (2016) An accelerated release study to evaluate long-acting contraceptive levonorgestrel-containing in situ forming depot systems. Pharmaceutics. https://doi.org/10.3390/pharmaceutics8030028

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zolnik BS, Leary PE, Burgess DJ (2006) Elevated temperature accelerated release testing of PLGA microspheres. J Control Release 112(3):293–300. https://doi.org/10.1016/j.jconrel.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  10. Shen J, Burgess DJ (2012) Accelerated in-vitro release testing methods for extended-release parenteral dosage forms. J Pharm Pharmacol 64(7):986–996. https://doi.org/10.1111/j.2042-7158.2012.01482.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jacob S, Nair AB (2018) An updated overview with simple and practical approach for developing in vitro-in vivo correlation. Drug Dev Res 79(3):97–110. https://doi.org/10.1002/ddr.21427

    Article  CAS  PubMed  Google Scholar 

  12. Vigata M, Meinert C, Hutmacher DW, Bock N (2020) Hydrogels as drug delivery systems: a review of current characterization and evaluation techniques. Pharmaceutics. https://doi.org/10.3390/pharmaceutics12121188

    Article  PubMed  PubMed Central  Google Scholar 

  13. Iyer SS, Barr WH, Karnes HT (2007) A ‘biorelevant’ approach to accelerated in vitro drug release testing of a biodegradable, naltrexone implant. Int J Pharm 340(1–2):119–125. https://doi.org/10.1016/j.ijpharm.2007.03.033

    Article  CAS  PubMed  Google Scholar 

  14. D’Souza S, Faraj JA, Giovagnoli S, DeLuca PP (2014) In vitro-in vivo correlation from lactide-co-glycolide polymeric dosage forms. Prog Biomater 3(2–4):131–142. https://doi.org/10.1007/s40204-014-0029-4

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ye M, Duan H, Yao L, Fang Y, Zhang X, Dong L, Yang F, Yang X, Pan W (2019) A method of elevated temperatures coupled with magnetic stirring to predict real time release from long acting progesterone PLGA microspheres. Asian J Pharm Sci 14(2):222–232. https://doi.org/10.1016/j.ajps.2018.05.010

    Article  PubMed  Google Scholar 

  16. Xie X, Li Z, Zhang L, Chi Q, Yang Y, Zhang H, Yang Y, Mei X (2015) A novel accelerated in vitro release method to evaluate the release of thymopentin from PLGA microspheres. Pharm Dev Technol 20(5):633–640. https://doi.org/10.3109/10837450.2014.892131

    Article  CAS  PubMed  Google Scholar 

  17. Tamani F, Bassand C, Hamoudi MC, Siepmann F, Siepmann J (2021) Mechanistic explanation of the (up to) 3 release phases of PLGA microparticles: monolithic dispersions studied at lower temperatures. Int J Pharm 596:120220. https://doi.org/10.1016/j.ijpharm.2021.120220

    Article  CAS  PubMed  Google Scholar 

  18. Thong NG, Hanh VTH, Bui TT, Hai NT, Nguyen DT, Nguyen TN, Nghiem THL, Nguyen VH, Nguyen TL, Dang Hoang V, Yen TH (2023) Investigation on modeling and correlating drug release profiles in the accelerated and real-time conditions to formulate leuprolide acetate-loaded biodegradable microspheres. J Drug Deliv Sci Technol. https://doi.org/10.1016/j.jddst.2023.104529

    Article  Google Scholar 

  19. D’Souza SS, Faraj JA, DeLuca PP (2005) A model-dependent approach to correlate accelerated with real-time release from biodegradable microspheres. AAPS PharmSciTech 6(4):E553–E564. https://doi.org/10.1208/pt060470

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kang J, Schwendeman SP (2007) Pore closing and opening in biodegradable polymers and their effect on the controlled release of proteins. Mol Pharm 4(1):104–118. https://doi.org/10.1021/mp060041n

    Article  CAS  PubMed  Google Scholar 

  21. Alborzi S, Rasekhi A, Shomali Z, Madadi G, Alborzi M, Kazemi M, Hosseini A, Nohandani (2018) Diagnostic accuracy of magnetic resonance imaging, transvaginal, and transrectal ultrasonography in deep infiltrating endometriosis. Med (Baltim) 97(8):e9536. https://doi.org/10.1097/MD.0000000000009536

    Article  Google Scholar 

  22. McKeage K, Lyseng-Williamson KA (2017) Triptorelin 3- and 6-month sustained-release formulations in locally advanced or metastatic Prostate cancer: a profile of their use in the EU. Drugs & Therapy Perspectives 33(7):321–325. https://doi.org/10.1007/s40267-017-0413-y

    Article  Google Scholar 

  23. Zenaty D, Blumberg J, Liyanage N, Jacqz-Aigrain E, Lahlou N, Carel JC, Co I (2016) A 6-Month Trial of the efficacy and Safety of Triptorelin Pamoate (11.25 mg) every 3 months in children with precocious puberty: a retrospective comparison with triptorelin acetate. Horm Res Paediatr 86(3):188–195. https://doi.org/10.1159/000448840

    Article  CAS  PubMed  Google Scholar 

  24. Chen L, Ahmed AMQ, Deng Y, Cao D, Du H, Cui J, Lee B-J, Cao Q (2019) Novel triptorelin acetate-loaded microspheres prepared by a liquid/oil/oil method with high encapsulation efficiency and low initial burst release. J Drug Deliv Sci Technol. https://doi.org/10.1016/j.jddst.2019.101390

    Article  Google Scholar 

  25. Wang H, Wang L, Liu C, Xu Y, Zhuang Y, Zhou Y, Gu S, Xu W, Yang H (2019) Effect of temperature on the morphology of poly (lactic acid) porous membrane prepared via phase inversion induced by water droplets. Int J Biol Macromol 133:902–910. https://doi.org/10.1016/j.ijbiomac.2019.04.145

    Article  CAS  PubMed  Google Scholar 

  26. Rahimi M, Mobedi H, Behnamghader A (2016) In situ-forming PLGA implants loaded with leuprolide acetate/beta-cyclodextrin complexes: mathematical modelling and degradation. J Microencapsul 33(4):355–64. https://doi.org/10.1080/02652048.2016.1194905

    Article  CAS  PubMed  Google Scholar 

  27. Hines DJ, Kaplan DL (2013) Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights. Crit Rev Ther Drug Carrier Syst 30(3):257–276. https://doi.org/10.1615/critrevtherdrugcarriersyst.2013006475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Siepmann J, Siepmann F (2012) Modeling of diffusion controlled drug delivery. J Control Release 161(2):351–362. https://doi.org/10.1016/j.jconrel.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  29. Bruschi ML (2015) Mathematical models of drug release. In: Bruschi ML (ed) Strategies to Modify the Drug Release from Pharmaceutical Systems. Woodhead Publishing, Sawston, pp 63–86. https://doi.org/10.1016/b978-0-08-100092-2.00005-9

    Chapter  Google Scholar 

  30. Siepmann J, Siegel RA, Rathbone MJ (2011) Fundamentals and applications of controlled release drug delivery. Springer, Berlin

    Google Scholar 

  31. Goel M, Leung D, Famili A, Chang D, Nayak P, Al-Sayah M (2021) Accelerated in vitro release testing method for a long-acting peptide-PLGA formulation. Eur J Pharm Biopharm 165:185–192. https://doi.org/10.1016/j.ejpb.2021.05.008

    Article  CAS  PubMed  Google Scholar 

  32. Asmus LR, Tille JC, Kaufmann B, Melander L, Weiss T, Vessman K, Koechling W, Schwach G, Gurny R, Moller M (2013) In vivo biocompatibility, sustained-release and stability of triptorelin formulations based on a liquid, degradable polymer. J Control Release 165(3):199–206. https://doi.org/10.1016/j.jconrel.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  33. Liu G, McEnnis K (2022) Glass transition temperature of PLGA particles and the influence on drug delivery applications. Polym (Basel). https://doi.org/10.3390/polym14050993

    Article  Google Scholar 

  34. Mazzara JM, Balagna MA, Thouless MD, Schwendeman SP (2013) Healing kinetics of microneedle-formed pores in PLGA films. J Control Release 171(2):172–177. https://doi.org/10.1016/j.jconrel.2013.06.035

    Article  CAS  PubMed  Google Scholar 

  35. Athawale MV, Goel G, Ghosh T, Truskett TM, Garde S (2007) Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water. Proc Natl Acad Sci U S A 104(3):733–738. https://doi.org/10.1073/pnas.0605139104

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. Buldyrev SV, Kumar P, Sastry S, Stanley HE, Weiner S (2010) Hydrophobic collapse and cold denaturation in the Jagla model of water. J Phys Condens Matter 22(28):284109. https://doi.org/10.1088/0953-8984/22/28/284109

    Article  CAS  PubMed  Google Scholar 

  37. Park K, Otte A, Sharifi F, Garner J, Skidmore S, Park H, Jhon YK, Qin B, Wang Y (2021) Formulation composition, manufacturing process, and characterization of poly(lactide-co-glycolide) microparticles. J Control Release 329:1150–1161. https://doi.org/10.1016/j.jconrel.2020.10.044

    Article  CAS  PubMed  Google Scholar 

  38. Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) Pore formation and pore closure in poly(D,L-lactide-co-glycolide) films. J Control Release 150(2):142–149. https://doi.org/10.1016/j.jconrel.2010.11.020

    Article  CAS  PubMed  Google Scholar 

  39. Ford Versypt AN, Pack DW, Braatz RD (2013) Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres–a review. J Control Release 165(1):29–37. https://doi.org/10.1016/j.jconrel.2012.10.015

    Article  CAS  PubMed  Google Scholar 

  40. Netti PA, Biondi M, Frigione M (2020) Experimental studies and modeling of the degradation process of poly(Lactic-co-Glycolic Acid) microspheres for sustained protein release. Polym (Basel). https://doi.org/10.3390/polym12092042

    Article  Google Scholar 

  41. Geddes L, Carson L, Themistou E, Buchanan F (2020) A comparison of the increased temperature accelerated degradation of poly(,-lactide-co-glycolide) and Poly(-lactide-co-glycolide). Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106853

    Article  Google Scholar 

  42. Amini-Fazl MS, Mobedi H (2019) Investigation of mathematical models based on diffusion control release for Paclitaxel from in-situ forming PLGA microspheres containing HSA microparticles. Mater Technol 35(1):50–59. https://doi.org/10.1080/10667857.2019.1651549

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

NA.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Kimia Shafiee: Formal analysis, Acquisition of data, Mathematical models, Writing original draft. Saeid Bazraei: Conceptualization, Study design, Analysis and interpretation, Writing original draft, Review & editing, Visualization. Hamid Mobedi: Conceptualization, Review & editing, Supervision. Arezou Mashak: Methodology, Formal analysis, Writing original draft.

Corresponding author

Correspondence to Saeid Bazraei.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics approval and consent to participate

All authors consent to participate in this manuscript.

Consent for publication

All authors consent to publish this manuscript in the Journal of Polymers and the Environment.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiee, K., Bazraei, S., Mashak, A. et al. The Impact of Temperature on the Formation, Release Mechanism, and Degradation of PLGA-based In-Situ Forming Implants. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03173-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03173-6

Keywords

Navigation