Skip to main content
Log in

Polyhydroxyalkanoate Biosynthesis from Waste Cooking Oils by Cupriavidus necator Strains Harbouring phaCBP-M-CPF4

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Waste cooking oil (WCO) from various sources were evaluated as low-cost carbon feedstock to produce poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] copolymer, which is a type of polyhydroxyalkanoate (PHA). Different Cupriavidus necator transformants harbouring phaCBP−M−CPF4 were employed as PHA-producing organisms in one-stage cultivation in shake flasks. Biological and chemical recovery of PHA were evaluated. C. necator Re2058/pHT1-CBP−M−CPF4 was able to achieve a cell dry weight (CDW) of 8.5 g/L, PHA content of 75.5 wt% and PHA concentration of 6.4 g/L from 1% (v/v) WCO. The weight-average molecular weight (Mw) of the synthesized PHA obtained from the same strain was 1440 kDa. The CDW, PHA content and concentration acquired using WCO are comparable to those using fresh oils as carbon substrates. The copolymer produced from distinct sources of WCO and different extraction methods did not have significant differences in molecular weights and thermal properties. Mealworms can perform biological recovery of PHA from cells fed with WCO from distinct sources. This study suggests that WCO from any source can be used as carbon source for bacteria to produce PHA. WCO can be a sustainable alternative for the more expensive fresh oils, and the synthesized PHA can be biologically recovered by mealworms. A combination approach of utilising low-cost substrate such as WCO, high-performance PHA producer including C. necator transformants and biological recovery to extract PHA is beneficial in biosynthesis of PHA copolymer, since this can make PHA production more economical and can improve the ability of PHA to compete with conventional petrochemical plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472. https://doi.org/10.1128/mr.54.4.450-472.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Doi Y (1990) Microbial polyesters. VCH, New York

    Google Scholar 

  3. Santolin L, Waldburger S, Neubauer P, Riedel SL (2021) Substrate-flexible two-stage fed-batch cultivations for the production of the PHA copolymer P(HB-co-HHx) with Cupriavidus necator Re2058/pCB113. Front Bioeng Biotechnol 9:623890. https://doi.org/10.3389/fbioe.2021.623890

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tan HT, Chek MF, Lakshmanan M, Foong CP, Hakoshima T, Sudesh K (2020) Evaluation of BP-M-CPF4 polyhydroxyalkanoate (PHA) synthase on the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil using Cupriavidus necator transformants. Int J Biol Macromol 159:250–257. https://doi.org/10.1016/j.ijbiomac.2020.05.064

    Article  CAS  PubMed  Google Scholar 

  5. Sudesh K, Bhubalan K, Chuah JA, Kek YK, Kamilah H, Sridewi N, Lee YF (2011) Synthesis of polyhydroxyalkanoate from palm oil and some new applications. Appl Microbiol Biotechnol 89:1373–1386. https://doi.org/10.1007/s00253-011-3098-5

    Article  CAS  PubMed  Google Scholar 

  6. Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1(1):1–24

    Article  Google Scholar 

  7. Hassan MA, Yee L-N, Yee PL, Ariffin H, Raha AR, Shirai Y, Sudesh K (2013) Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass Bioenerg 50:1–9. https://doi.org/10.1016/j.biombioe.2012.10.014

    Article  CAS  Google Scholar 

  8. Sudesh K (2012) Polyhydroxyalkanoates from palm oil: biodegradable plastics. Springer Science & Business Media, Heidelberg

    Google Scholar 

  9. Li R, Zhang H, Qi Q (2007) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour Technol 98:2313–2320. https://doi.org/10.1016/j.biortech.2006.09.014

    Article  CAS  PubMed  Google Scholar 

  10. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555. https://doi.org/10.1016/S0079-6700(00)00035-6

    Article  CAS  Google Scholar 

  11. Noda I, Green PR, Satkowski MM, Schechtman LA (2005) Preparation and properties of a novel class of polyhydroxyalkanoate copolymers. Biomacromolecules 6:580–586. https://doi.org/10.1021/bm049472m

    Article  CAS  PubMed  Google Scholar 

  12. Asrar J, Valentin HE, Berger PA, Tran M, Padgette SR, Garbow JR (2002) Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) polymers. Biomacromolecules 3:1006–1012. https://doi.org/10.1021/bm025543a

    Article  CAS  PubMed  Google Scholar 

  13. Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828

    Article  CAS  Google Scholar 

  14. Tan HT, Chek MF, Miyahara Y, Kim S-Y, Tsuge T, Hakoshima T, Sudesh K (2022) Characterization of an (R)-specific enoyl-CoA hydratase from Streptomyces sp. strain CFMR 7: A metabolic tool for enhancing the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Biosci Bioeng 134:288–294. https://doi.org/10.1016/j.jbiosc.2022.07.005

    Article  CAS  PubMed  Google Scholar 

  15. Budde CF, Riedel SL, Willis LB, Rha C, Sinskey AJ (2011) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl Environ Microbiol 77:2847–2854. https://doi.org/10.1128/aem.02429-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mifune J, Nakamura S, Fukui T (2008) Targeted engineering of Cupriavidus necator chromosome for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from vegetable oil. Can J Chem 86:621–627. https://doi.org/10.1139/v08-047

    Article  Google Scholar 

  17. Tanaka K, Yoshida K, Orita I, Fukui T (2021) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from CO2 by a recombinant Cupriavidus necator. Bioengineering 8:179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aoyagi Y, Doi Y, Iwata T (2003) Mechanical properties and highly ordered structure of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] films: effects of annealing and two-step drawing. Polym Degrad Stab 79:209–216

    Article  CAS  Google Scholar 

  19. Lee SY, Choi J-i, Wong HH (1999) Recent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review. Int J Biol Macromol 25:31–36. https://doi.org/10.1016/S0141-8130(99)00012-4

    Article  CAS  PubMed  Google Scholar 

  20. Song JH, Jeon CO, Choi MH, Yoon SC, Park W (2008) Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J Microbiol Biotechnol 18:1408–1415

    CAS  PubMed  Google Scholar 

  21. Loo CY, Lee WH, Tsuge T, Doi Y, Sudesh K (2005) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol Lett 27:1405–1410. https://doi.org/10.1007/s10529-005-0690-8

    Article  CAS  PubMed  Google Scholar 

  22. Jiang G, Hill DJ, Kowalczuk M, Johnston B, Adamus G, Irorere V, Radecka I (2016) Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 17:1157. https://doi.org/10.3390/ijms17071157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loan TT, Trang DTQ, Huy PQ, Ninh PX, Van Thuoc D (2022) A fermentation process for the production of poly(3-hydroxybutyrate) using waste cooking oil or waste fish oil as inexpensive carbon substrate. Biotechnol Rep 33:e00700. https://doi.org/10.1016/j.btre.2022.e00700

    Article  CAS  Google Scholar 

  24. Ruiz C, Kenny ST, Narancic T, Babu R, Connor KO (2019) Conversion of waste cooking oil into medium chain polyhydroxyalkanoates in a high cell density fermentation. J Biotechnol 306:9–15. https://doi.org/10.1016/j.jbiotec.2019.08.020

    Article  CAS  PubMed  Google Scholar 

  25. Surendran A, Lakshmanan M, Chee JY, Sulaiman AM, Thuoc DV, Sudesh K (2020) Can polyhydroxyalkanoates be produced efficiently from waste plant and animal oils? Front Bioeng Biotechnol 8:169. https://doi.org/10.3389/fbioe.2020.00169

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thinagaran L, Sudesh K (2019) Evaluation of sludge palm oil as feedstock and development of efficient method for its utilization to produce polyhydroxyalkanoate. Waste Biomass Valorization 10:709–720. https://doi.org/10.1007/s12649-017-0078-8

    Article  CAS  Google Scholar 

  27. Riedel SL, Jahns S, Koenig S, Bock MCE, Brigham CJ, Bader J, Stahl U (2015) Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J Biotechnol 214:119–127. https://doi.org/10.1016/j.jbiotec.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  28. Akiyama M, Tsuge T, Doi Y (2003) Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym Degrad Stab 80:183–194

    Article  CAS  Google Scholar 

  29. Kahar P, Tsuge T, Taguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stab 83:79–86

    Article  CAS  Google Scholar 

  30. Ashby RD, Solaiman DKY (2008) Poly(hydroxyalkanoate) biosynthesis from crude Alaskan pollock (Theragra chalcogramma) oil. J Polym Environ 16:221–229. https://doi.org/10.1007/s10924-008-0108-5

    Article  CAS  Google Scholar 

  31. Tufail S, Munir S, Jamil N (2017) Variation analysis of bacterial polyhydroxyalkanoates production using saturated and unsaturated hydrocarbons. Braz J Microbiol 48:629–636. https://doi.org/10.1016/j.bjm.2017.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Pötter M, Schwartz E, Strittmatter A, Voß I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262. https://doi.org/10.1038/nbt1244

    Article  PubMed  Google Scholar 

  33. Reinecke F, Steinbüchel A (2009) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16:91–108. https://doi.org/10.1159/000142897

    Article  CAS  PubMed  Google Scholar 

  34. Choi SY, Rhie MN, Kim HT, Joo JC, Cho IJ, Son J, Jo SY, Sohn YJ, Baritugo K-A, Pyo J, Lee Y, Lee SY, Park SJ (2020) Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 58:47–81. https://doi.org/10.1016/j.ymben.2019.05.009

    Article  CAS  PubMed  Google Scholar 

  35. Foong CP, Lakshmanan M, Abe H, Taylor TD, Foong SY, Sudesh K (2017) A novel and wide substrate specific polyhydroxyalkanoate (PHA) synthase from unculturable bacteria found in mangrove soil. J Polym Res 25:23. https://doi.org/10.1007/s10965-017-1403-4

    Article  CAS  Google Scholar 

  36. Murugan P, Han L, Gan C-Y, Maurer FHJ, Sudesh K (2016) A new biological recovery approach for PHA using mealworm, Tenebrio molitor. J Biotechnol 239:98–105. https://doi.org/10.1016/j.jbiotec.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  37. Ong SY, Kho HP, Riedel SL, Kim SW, Gan CY, Taylor TD, Sudesh K (2018) An integrative study on biologically recovered polyhydroxyalkanoates (PHAs) and simultaneous assessment of gut microbiome in yellow mealworm. J Biotechnol 265:31–39. https://doi.org/10.1016/j.jbiotec.2017.10.017

    Article  CAS  PubMed  Google Scholar 

  38. Zainab-L I, Sudesh K (2019) High cell density culture of Cupriavidus necator H16 and improved biological recovery of polyhydroxyalkanoates using mealworms. J Biotechnol 305:35–42. https://doi.org/10.1016/j.jbiotec.2019.09.001

    Article  CAS  PubMed  Google Scholar 

  39. Budde CF, Mahan AE, Lu J, Rha C, Sinskey AJ (2010) Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16. J Bacteriol 192:5319–5328. https://doi.org/10.1128/JB.00207-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Walker J, Whitton J, Alderson B (1982) Extraction of poly(beta-hydroxy butyric acid). European Patent Specification 46017

  41. Braunegg G, Sonnleitner B, Lafferty R (1978) A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6:29–37

    Article  CAS  Google Scholar 

  42. Berger E, Ramsay BA, Ramsay JA, Chavarie C, Braunegg G (1989) PHB recovery by hypochlorite digestion of non-PHB biomass. Biotechnol Tech 3:227–232. https://doi.org/10.1007/BF01876053

    Article  CAS  Google Scholar 

  43. Wong YM, Brigham CJ, Rha C, Sinskey AJ, Sudesh K (2012) Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour Technol 121:320–327. https://doi.org/10.1016/j.biortech.2012.07.015

    Article  CAS  PubMed  Google Scholar 

  44. Awalludin MF, Sulaiman O, Hashim R, Nadhari WNAW (2015) An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renew Sust Energ Rev 50:1469–1484. https://doi.org/10.1016/j.rser.2015.05.085

    Article  CAS  Google Scholar 

  45. Suzihaque MUH, Alwi H, Kalthum Ibrahim U, Abdullah S, Haron N (2022) Biodiesel production from waste cooking oil: A brief review. Mater Today: Proc 63:S490. https://doi.org/10.1016/j.matpr.2022.04.527

    Article  CAS  Google Scholar 

  46. Purama RK, Al-Sabahi JN, Sudesh K (2018) Evaluation of date seed oil and date molasses as novel carbon sources for the production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Cupriavidus necator H16 Re2058/pCB113. Ind Crops Prod 119:83–92. https://doi.org/10.1016/j.indcrop.2018.04.013

    Article  CAS  Google Scholar 

  47. Verlinden RA, Hill DJ, Kenward MA, Williams CD, Piotrowska-Seget Z, Radecka IK (2011) Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Expr 1:11. https://doi.org/10.1186/2191-0855-1-11

    Article  CAS  Google Scholar 

  48. Chee JY, Tan YF, Samian MR, Sudesh K (2010) Isolation and characterization of a Burkholderia sp. USM (JCM15050) capable of producing polyhydroxyalkanoate (PHA) from triglycerides, fatty acids and glycerols. J Polym Environ 18:584–592. https://doi.org/10.1007/s10924-010-0204-1

    Article  CAS  Google Scholar 

  49. Dennis D, McCoy M, Stangl A, Valentin HE, Wu Z (1998) Formation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha. J Biotechnol 64:177–186. https://doi.org/10.1016/S0168-1656(98)00110-2

    Article  CAS  PubMed  Google Scholar 

  50. Fukui T, Doi Y (1997) Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol 179:4821–4830. https://doi.org/10.1128/jb.179.15.4821-4830.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haywood GW, Anderson AJ, Chu L, Dawes EA (1988) Characterization of two 3-ketothiolases possessing differing substrate specificities in the polyhydroxyalkanoate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52:91–96

    Article  CAS  Google Scholar 

  52. Haywood GW, Anderson AJ, Chu L, Dawes EA (1988) The role of NADH- and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52:259–264

    Article  CAS  Google Scholar 

  53. Steinbüchel A, Schlegel HG (1991) Physiology and molecular genetics of poly(β-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5:535–542. https://doi.org/10.1111/j.1365-2958.1991.tb00725.x

    Article  PubMed  Google Scholar 

  54. Fukui T, Shiomi N, Doi Y (1998) Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol 180:667–673. https://doi.org/10.1128/jb.180.3.667-673.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Han J, Qiu Y-Z, Liu D-C, Chen G-Q (2004) Engineered Aeromonas hydrophila for enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with alterable monomers composition. FEMS Microbiol Lett 239:195–201. https://doi.org/10.1016/j.femsle.2004.08.044

    Article  CAS  PubMed  Google Scholar 

  56. Kawashima Y, Cheng W, Mifune J, Orita I, Nakamura S, Fukui T (2012) Characterization and functional analyses of R-specific enoyl coenzyme A hydratases in polyhydroxyalkanoate-producing Ralstonia eutropha. Appl Environ Microbiol 78:493–502. https://doi.org/10.1128/aem.06937-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Balani K, Verma V, Agarwal A, Narayan R (2015) Biosurfaces: a materials science and engineering perspective. Wiley, Hoboken

    Google Scholar 

  58. Lanyi FJ, Wenzke N, Kaschta J, Schubert DW (2020) On the determination of the enthalpy of fusion of α-crystalline isotactic polypropylene using differential scanning calorimetry, X-ray diffraction, and fourier-transform infrared spectroscopy: an old story revisited. Adv Eng Mater 22:1900796. https://doi.org/10.1002/adem.201900796

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Zacros (Fujimori Kogyo Co. Ltd.) from Japan (304/PBIOLOGI/6501281/F117). Lun Qing Fook acknowledges the Graduate Student Financial Assistance (GRA-Assist) awarded by Universiti Sains Malaysia (USM). The authors thank Naresh Sandrasekaran, Yong Sen Khok, Dhines Selvanathan, Jia Hui Wan, Hui Jia Tang, Kogillavani Mathivannan and Geshani Manogaran for helping in experiments.

Funding

This study was funded by Zacros (Fujimori Kogyo Co. Ltd.) from Japan (304/PBIOLOGI/6501281/F117).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LQF, KS; Methodology: HTT, ML, IZ-L, SLA; Formal analysis and investigation: LQF, HTT, ML, IZ-L, AA, SLA; Writing—original draft preparation: LQF, AA; Writing—review and editing: LQF, HTT, ML, IZ-L, AA, SLA, KS; Funding acquisition: KS; Resources: KS; Supervision: KS.

Corresponding author

Correspondence to Kumar Sudesh.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 540.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fook, L.Q., Tan, H.T., Lakshmanan, M. et al. Polyhydroxyalkanoate Biosynthesis from Waste Cooking Oils by Cupriavidus necator Strains Harbouring phaCBP-M-CPF4. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03166-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03166-5

Keywords

Navigation