Skip to main content

Advertisement

Log in

Melt-Extruded Home Compostable Films Based On Blends Of Thermoplastic Gliadins And Poly(ε-Caprolactone) Intended For Food Packaging Applications

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biodegradable polymers for food applications have emerged as a sustainable alternative to reduce plastic waste. In this work, compostable films based on blends of poly(ε-caprolactone) (PCL) and thermoplastic gliadins (TPG) were developed for packaging applications. Firstly, gliadins were extracted from wheat gluten and plasticized with glycerol. Then, PCL/TPG films were prepared by cast-extrusion processing at pilot scale and samples were characterized in terms of their structural, morphological, thermal, mechanical, barrier and optical properties. The addition of TPG increased the glass transition temperature (Tg) of PCL, reduced the oxygen permeability at 0% and 50% relative humidity values, and improved the seal strength properties of the films, having a minimal effect on the thermal stability, transparency, and the high stretchability characteristic of PCL. On the other hand, the presence of gliadins led to more water sensitive materials, resulting in a slight increase in the water vapor permeability. Finally, the home-compostability assessment of the films revealed that the presence of gliadins accelerated the aerobic biodegradation and the disintegration with respect to pristine PCL film, thus, showing the potential interest of the developed materials for sustainable packaging applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Beitzen-Heineke EF, Balta-Ozkan N, Reefke H (2017) The prospects of zero-packaging grocery stores to improve the social and environmental impacts of the food supply chain. J Clean Prod 140:1528–1541

    Article  Google Scholar 

  2. Gutiérrez Carmona TJ, Alvarez VA (2018) Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract. Food Hydrocoll 1(77):407–420

    Article  Google Scholar 

  3. MacArthur DE, Waughray D, Stuchtey MR (2016) The new plastics economy, rethinking the future of plastics. World Economic Forum. Ellen MacArthur Foundation and McKinsey Company, London

    Google Scholar 

  4. Arman Alim AA, Mohammad Shirajuddin SS, Anuar FH (2022) A review of nonbiodegradable and biodegradable composites for food packaging application. J Chem. https://doi.org/10.1155/2022/7670819

    Article  Google Scholar 

  5. Popa M, Mitelut A, Niculita P et al (2011) Biodegradable materials for food packaging applications. J Environ Prot Ecol 12:1825–1834

    CAS  Google Scholar 

  6. Rydz J, Musioł M, Zawidlak-Węgrzyńska B, Sikorska W (2018) Present and future of biodegradable polymers for food packaging applications. Biopolym food Des. https://doi.org/10.1016/B978-0-12-811449-0.00014-1

    Article  Google Scholar 

  7. Aragón-gutierrez A, Arrieta MP, López-gonzález M et al (2020) Hybrid biocomposites based on poly ( lactic acid ) and silica aerogel for food packaging applications. Materials 13(21):4910

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thakur M, Majid I, Hussain S, Nanda V (2021) Poly(ε-caprolactone): A potential polymer for biodegradable food packaging applications. Packag Technol Sci 34:449–461. https://doi.org/10.1002/pts.2572

    Article  CAS  Google Scholar 

  9. Vilaplana F, Strömberg E, Karlsson S (2010) Environmental and resource aspects of sustainable biocomposites. Polym Degrad Stab 95:2147–2161

    Article  CAS  Google Scholar 

  10. Abdellah Ali SF (2016) Mechanical and thermal properties of promising polymer composites for food packaging applications. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/137/1/012035

    Article  Google Scholar 

  11. Ilyas RA, Zuhri MYM, Norrrahim MNF et al (2022) Natural Fiber-Reinforced polycaprolactone green and hybrid biocomposites for various advanced applications. Polymers (Basel) 14:1–28. https://doi.org/10.3390/polym14010182

    Article  CAS  Google Scholar 

  12. Avella M, Errico ME, Laurienzo P et al (2000) Preparation and characterisation of compatibilised polycaprolactone/starch composites. Polymer (Guildf) 41:3875–3881

    Article  CAS  Google Scholar 

  13. Ramírez-Arreola DE, Robledo-Ortiz JR, Moscoso F et al (2012) Film processability and properties of polycaprolactone/thermoplastic starch blends. J Appl Polym Sci 123:179–190

    Article  Google Scholar 

  14. Corradini E, Mattoso LHC, Guedes CGF, Rosa DS (2004) Mechanical, thermal and morphological properties of poly(ε-caprolactone)/zein blends. Polym Adv Technol 15(6):340–345

    Article  CAS  Google Scholar 

  15. John J, Tang J, Bhattacharya M (1998) Processing of biodegradable blends of wheat gluten and modified polycaprolactone. Polymer (Guildf) 39:2883–2895. https://doi.org/10.1016/S0032-3861(97)00553-3

    Article  CAS  Google Scholar 

  16. Finkenstadt VL, Mohamed AA, Biresaw G, Willett JL (2008) Mechanical properties of green composites with polycaprolactone and wheat gluten. J Appl Polym Sci 110:2218–2226. https://doi.org/10.1002/app.28446

    Article  CAS  Google Scholar 

  17. Gutiérrez TJ, Mendieta JR, Ortega-Toro R (2021) In-depth study from gluten/PCL-based food packaging films obtained under reactive extrusion conditions using chrome octanoate as a potential food grade catalyst. Food Hydrocoll. 111:106255. https://doi.org/10.1016/j.foodhyd.2020.106255

    Article  CAS  Google Scholar 

  18. Hernández-Muñoz P, Kanavouras A, Ng PKW, Gavara R (2003) Development and characterization of biodegradable films made from wheat gluten protein fractions. J Agric Food Chem 51:7647–7654

    Article  PubMed  Google Scholar 

  19. Pau-Balaguer M, Gomez-Estaca J, Gavara R, Hernandez-Munoz P (2011) Functional properties of bioplastics made from wheat gliadins modified with cinnamaldehyde. J Agric Food Chem 59:6689–6695. https://doi.org/10.1021/jf200477a

    Article  CAS  Google Scholar 

  20. Zhu G, Xu Q, Qin R et al (2005) Effect of γ-radiation on crystallization of polycaprolactone. Radiat Phys Chem 74:42–50

    Article  CAS  Google Scholar 

  21. ISO 527–3:2018 Plastics (2018) Determination of tensile properties — Part 3: Test conditions for films and sheets

  22. ASTM F88 / F88M-15 (2015) Standard Test Method for Seal Strength of Flexible Barrier Materials 1. ASTM Int. 1–11

  23. Kormin S, Kormin F, Beg MDH (2019) Study on the biodegradability and water adsorption of ldpe/sago starch blend. In: Journal of Physics: Conference Series. IOP Publishing p 12033

  24. ASTM D3985 - 17 (2017) Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor. In: ASTM annual book of standards

  25. ASTM F1927-20 (2020) Standard Test Method for Determination of Oxygen Gas Transmission Rate , Permeability and Permeance at Controlled Relative Humidity Through Barrier Materials Using a Coulometric Detector. 1–6

  26. ASTM F1249-20 (2020) Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor. ASTM Int.

  27. NF T51-800 (2015) Plastics - Specifications for plastics suitable for home composting

  28. UNE-EN ISO 14855–1:2013 (2013) Determinación de la biodegradabilidad aeróbica final de materiales plásticos en condiciones de compostaje controladas. Método según el análisis de dióxido de carbono generado. Parte 1: Método general.

  29. ISO 20200:2015 Plastics (2015) Determination of the degree of disintegration of plastic materials under simulated composting conditions in a laboratory-scale test. 1–8

  30. Zárate-Ramírez LS, Martínez I, Romero A et al (2011) Wheat gluten-based materials plasticised with glycerol and water by thermoplastic mixing and thermomoulding. J Sci Food Agric 91:625–633. https://doi.org/10.1002/jsfa.4224

    Article  PubMed  CAS  Google Scholar 

  31. Balaguer MP, Gomez-Estaca J, Cerisuelo JP et al (2014) Effect of thermo-pressing temperature on the functional properties of bioplastics made from a renewable wheat gliadin resin. LWT—Food Sci Technol 56(1):161–167. https://doi.org/10.1016/j.lwt.2013.10.035

    Article  CAS  Google Scholar 

  32. Dhaka V, Khatkar BS (2016) Microstructural, thermal and IR spectroscopy characterisation of wheat gluten and its sub fractions. J Food Sci Technol 53:3356–3363. https://doi.org/10.1007/s13197-016-2314-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Flores-Cedillo ML, Alvarado-Estrada KN, Pozos-Guillén AJ et al (2016) Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration. J Mater Sci Mater Med 27:1–12. https://doi.org/10.1007/s10856-015-5640-y

    Article  CAS  Google Scholar 

  34. Huang A, Jiang Y, Napiwocki B et al (2017) Fabrication of poly(ϵ-caprolactone) tissue engineering scaffolds with fibrillated and interconnected pores utilizing microcellular injection molding and polymer leaching. RSC Adv 7:43432–43444. https://doi.org/10.1039/c7ra06987a

    Article  CAS  Google Scholar 

  35. Diken ME, Koçer Kizilduman B, Doğan S, Doğan M (2022) Antibacterial and antioxidant phenolic compounds loaded PCL biocomposites for active food packaging application. J Appl Polym Sci. https://doi.org/10.1002/app.52423

    Article  Google Scholar 

  36. Nashchekina Y, Chabina A, Nashchekin A, Mikhailova N (2020) Different conditions for the modification of polycaprolactone films with l-arginine. Int J Mol Sci 21:1–13. https://doi.org/10.3390/ijms21196989

    Article  CAS  Google Scholar 

  37. Ortega-Toro R, Contreras J, Talens P, Chiralt A (2015) Physical and structural properties and thermal behaviour of starch-poly(e{open}-caprolactone) blend films for food packaging. Food Packag Shelf Life 5:10–20. https://doi.org/10.1016/j.fpsl.2015.04.001

    Article  Google Scholar 

  38. Ansorena MR, Zubeldía F, Marcovich NE (2016) Active wheat gluten films obtained by thermoplastic processing. Lwt 69:47–54. https://doi.org/10.1016/j.lwt.2016.01.020

    Article  CAS  Google Scholar 

  39. Noel TR, Parker R, Ring SG, Tatham AS (1995) The glass-transition behaviour of wheat gluten proteins. Int J Biol Macromol 17:81–85. https://doi.org/10.1016/0141-8130(95)93521-x

    Article  PubMed  CAS  Google Scholar 

  40. Pouplin M, Redl A, Gontard N (1999) Glass transition of wheat gluten plasticized with water, glycerol, or sorbitol. J Agric Food Chem 47:538–543. https://doi.org/10.1021/jf980697w

    Article  PubMed  CAS  Google Scholar 

  41. Laoutid F, Lenoir H, Santaeularia AM et al (2022) Impact-resistant poly(3-Hydroxybutyrate)/Poly( ε -Caprolactone)-based materials, through reactive melt processing, for compression-molding and 3d-printing applications. Mater 15(22):8233

    Article  CAS  Google Scholar 

  42. Cyras VP, Vázquez A, Kenny JM (2001) Crystallization kinetics by differential scanning calorimetry for PCL/starch and their reinforced sisal fiber composites. Polym Eng Sci 41(9):1521–1528. https://doi.org/10.1002/pen.10851

    Article  CAS  Google Scholar 

  43. Merino D, Alvarez VA, Pérez CJ (2018) Non-isothermal crystallization of poly(ε-caprolactone) nanocomposites with soy lecithin-modified bentonite. Polym Cryst 3(1):e10020. https://doi.org/10.1002/pcr2.10020

    Article  CAS  Google Scholar 

  44. Aoyagi Y, Yamashita K, Doi Y (2002) Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polym Degrad Stab 76:53–59. https://doi.org/10.1016/S0141-3910(01)00265-8

    Article  CAS  Google Scholar 

  45. Mina Hernandez JH (2020) Effect of the incorporation of polycaprolactone (PCL) on the retrogradation of binary blends with cassava thermoplastic starch (TPS). Polymers (Basel) 13(1):38. https://doi.org/10.3390/polym13010038

    Article  PubMed  CAS  Google Scholar 

  46. Li M, Yue Q, Liu C et al (2020) Effect of gliadin/glutenin ratio on pasting, thermal, and structural properties of wheat starch. J Cereal Sci 93:102973. https://doi.org/10.1016/j.jcs.2020.102973

    Article  CAS  Google Scholar 

  47. Feijoo P, Mohanty AK, Rodriguez-Uribe A et al (2022) Biodegradable blends from bacterial biopolyester PHBV and bio-based PBSA: Study of the effect of chain extender on the thermal, mechanical and morphological properties. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.11.188

    Article  PubMed  Google Scholar 

  48. Li G, Lee-Sullivan P, Thring R (2000) Determination of activation energy for glass transition of an epoxy adhesive using dynamic mechanical analysis. J Therm Anal Calorim - J THERM ANAL CALORIM 60:377–390. https://doi.org/10.1023/A:1010120921582

    Article  CAS  Google Scholar 

  49. Ward I, Sweeney J (2004) An Introduction to The Mechanical Properties of Solid Polymers. Wiley, Hoboken

    Google Scholar 

  50. Sonseca A, Salim M, Muñoz-Bonilla A et al (2020) Biodegradable and antimicrobial PLA–OLA blends containing chitosan-mediated silver nanoparticles with shape memory properties for potential medical applications. Nanomater 10:1065. https://doi.org/10.3390/nano10061065

    Article  CAS  Google Scholar 

  51. Duval A, Molina-Boisseau S, Chirat C, Morel M-H (2016) Dynamic mechanical analysis of the multiple glass transitions of plasticized wheat gluten biopolymer. J Appl Polym Sci. https://doi.org/10.1002/app.43254

    Article  Google Scholar 

  52. Sun S, Song Y, Zheng Q (2007) Morphologies and properties of thermo-molded biodegradable plastics based on glycerol-plasticized wheat gluten. Food Hydrocoll 21(7):1005–1013. https://doi.org/10.1016/j.foodhyd.2006.03.004

    Article  CAS  Google Scholar 

  53. Mahieu A, Terrié C, Agoulon A et al (2013) Thermoplastic starch and poly(ε-caprolactone) blends: Morphology and mechanical properties as a function of relative humidity. J Polym Res. https://doi.org/10.1007/s10965-013-0229-y

    Article  Google Scholar 

  54. Abdellah S (2016) Mechanical and thermal properties of promising polymer composites for food packaging applications. IOP Conf Ser Mater Sci Eng 137:12035. https://doi.org/10.1088/1757-899X/137/1/012035

    Article  Google Scholar 

  55. Pucciariello R, D’Auria M, Villani V et al (2010) Lignin/Poly(e-Caprolactone) blends with tuneable mechanical properties prepared by high energy ball-milling. J Polym Environ 18:326. https://doi.org/10.1007/s10924-010-0212-1

    Article  CAS  Google Scholar 

  56. Poisson C, Hervais V, Lacrampe MF, Krawczak P (2006) Optimization of PE/Binder/PA extrusion blow-molded films. I. Heat sealing ability improvement using PE/EVA blends. J Appl Polym Sci 99(33):974–985. https://doi.org/10.1002/app.22405

    Article  CAS  Google Scholar 

  57. Yousefzadeh Tabasi R, Najarzadeh Z, Ajji A (2015) Development of high performance sealable films based on biodegradable/compostable blends. Ind Crops Prod 72:206–213. https://doi.org/10.1016/j.indcrop.2014.11.021

    Article  CAS  Google Scholar 

  58. Hernandez García E, Vargas M, Chiralt A (2022) Active starch-polyester bilayer films with surface-Incorporated ferulic acid. Membranes (Basel). https://doi.org/10.3390/membranes12100976

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liewchirakorn P, Aht-Ong D, Chinsirikul W (2018) Practical approach in developing desirable peel-seal and clear lidding films based on poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends. Packag Technol Sci 31(5):296–309. https://doi.org/10.1002/pts.2321

    Article  CAS  Google Scholar 

  60. Lagrain B, Goderis B, Brijs K, Delcour JA (2010) Molecular basis of processing wheat gluten toward biobased materials. Biomacromol 11:533–541. https://doi.org/10.1021/bm100008p

    Article  CAS  Google Scholar 

  61. Domenek S, Morel M-H, Bonicel J, Guilbert S (2002) Polymerization kinetics of wheat gluten upon thermosetting. A mechanistic model. J Agric Food Chem 50:5947–5954. https://doi.org/10.1021/jf0256283

    Article  PubMed  CAS  Google Scholar 

  62. Xin Y-Z, Quan M, Kim S-S et al (2015) Fabrication of MgCl2/PCL Composite Scaffolds Using 3D Bio Plotting System for Bone Regeneration. J Biomater Tissue Eng 5:849–856. https://doi.org/10.1166/jbt.2015.1374

    Article  Google Scholar 

  63. Leszczak V, Baskett DA, Popat KC (2014) Smooth muscle cell functionality on collagen immobilized polycaprolactone nanowire surfaces. J Funct Biomater 5:58–77. https://doi.org/10.3390/jfb5020058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Herniou–Julien C, Mendieta JR, Gutiérrez TJ (2019) Characterization of biodegradable/non-compostable films made from cellulose acetate/corn starch blends processed under reactive extrusion conditions. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2018.10.024

    Article  Google Scholar 

  65. Kester JJ, Fennema OR (1986) Edible films and coatings: a review. Food Technol 40:47–59

    CAS  Google Scholar 

  66. Balaguer MP, Cerisuelo JP, Gavara R, Hernandez-Muñoz P (2013) Mass transport properties of gliadin films: Effect of cross-linking degree, relative humidity, and temperature. J Memb Sci 428:380–392. https://doi.org/10.1016/j.memsci.2012.10.022

    Article  CAS  Google Scholar 

  67. Carosio F, Colonna S, Fina A et al (2014) Efficient gas and water vapor barrier properties of thin poly(lactic acid) packaging films: functionalization with moisture resistant nafion and clay multilayers. Chem Mater 26:5459–5466. https://doi.org/10.1021/cm501359e

    Article  CAS  Google Scholar 

  68. Nanni G, Heredia-Guerrero JA, Paul UC et al (2019) Poly(furfuryl alcohol)-polycaprolactone blends. Polymers (Basel). https://doi.org/10.3390/polym11061069

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gontard N, Thibault R, Cuq B, Guilbert S (1996) Influence of Relative Humidity and Film Composition on Oxygen and Carbon Dioxide Permeabilities of Edible Films. J Agric Food Chem 44:1064–1069. https://doi.org/10.1021/jf9504327

    Article  CAS  Google Scholar 

  70. López-de-Dicastillo C, Gómez-Estaca J, Catalá R et al (2012) Active antioxidant packaging films: Development and effect on lipid stability of brined sardines. Food Chem 131(4):1376–1384. https://doi.org/10.1016/j.foodchem.2011.10.002

    Article  CAS  Google Scholar 

  71. Roy S, Weller CL, Gennadios A et al (1999) Physical and molecular properties of wheat gluten films cast from heated film-forming solutions. J Food Sci 64(1):57–60. https://doi.org/10.1111/j.1365-2621.1999.tb09860.x

    Article  CAS  Google Scholar 

  72. Adhikari B, Tremier A, Martinez J, Barrington S (2010) Home and community composting for on-site treatment of urban organic waste: Perspective for Europe and Canada. Waste Manag Res 28:1039–1053. https://doi.org/10.1177/0734242X10373801

    Article  PubMed  CAS  Google Scholar 

  73. Darwin SEC (2008) Green paper on the management of bio-waste in the European Union. SEC Eur Comm 2936

  74. Chevillard A, Angellier-Coussy H, Cuq B et al (2011) How the biodegradability of wheat gluten-based agromaterial can be modulated by adding nanoclays. Polym Degrad Stab 96(12):2088–2097. https://doi.org/10.1016/j.polymdegradstab.2011.09.024

    Article  CAS  Google Scholar 

  75. Balaguer MP, Villanova J, Cesar G et al (2015) Compostable properties of antimicrobial bioplastics based on cinnamaldehyde cross-linked gliadins. Chem Eng J 262:447–455. https://doi.org/10.1016/j.cej.2014.09.099

    Article  CAS  Google Scholar 

  76. Zhang X, Gozukara Y, Sangwan P et al (2010) Biodegradation of chemically modified wheat gluten-based natural polymer materials. Polym Degrad Stab 95:2309–2317. https://doi.org/10.1016/j.polymdegradstab.2010.09.001

    Article  CAS  Google Scholar 

  77. Hong S, Choi W, Cho S et al (2009) Mechanical properties and biodegradability of poly-3-caprolactone/soy protein isolate blends compatibilized by coconut oil. Polym Degrad Stab - POLYM Degrad STABIL 94:1876–1881. https://doi.org/10.1016/j.polymdegradstab.2009.04.029

    Article  CAS  Google Scholar 

  78. Borghesi D, Molina M, Guerra M, Campos M (2016) Biodegradation study of a novel poly-caprolactone-coffee husk composite film. Mater Res. https://doi.org/10.1590/1980-5373-MR-2015-0586

    Article  Google Scholar 

  79. Su S, Kopitzky R, Tolga S, Kabasci S (2019) Polymers review polylactide (PLA) and its blends with poly(butylene succinate) (PBS): A brief review. Polymers (Basel) 11:1193. https://doi.org/10.3390/polym11071193

    Article  PubMed  CAS  Google Scholar 

  80. Ramos M, Fortunati E, Beltrán A et al (2020) Controlled release, disintegration, antioxidant, and antimicrobial properties of poly (lactic acid)/thymol/nanoclay composites. Polymers (Basel) 12(9):1878. https://doi.org/10.3390/polym12091878

    Article  PubMed  CAS  Google Scholar 

  81. Kalita NK, Bhasney SM, Mudenur C et al (2020) End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions. Chemosphere 247:125875. https://doi.org/10.1016/j.chemosphere.2020.125875

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The authors would like to express their gratitude to the Generalitat Valenciana (Grant IMAMCA/2022/10) and the Spanish Ministry of Science and Innovation (Grant PID2021-123077OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by the "ERDF A way of making Europe") for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

AAG: Data curation, Formal analysis, Investigation, Methodology, Writing—Original draft, Visualization, Writing, Review & Editing. PFMG: Formal analysis, Investigation, Methodology, Writing—Original draft. MG: Funding acquisition, Investigation, Project Administration, Resources, Supervision, Writing, Review & Editing. RG: Conceptualization, Formal analysis, Funding acquisition, Investigation, Project Administration, Resources, Supervision, Validation, Visualization, Writing, Review & Editing. DL: Investigation, Methodology, Validation, Resources, Supervision, Writing, Review & Editing. PHM: Conceptualization, Formal analysis, Funding acquisition, Investigation, Project Administration, Resources, Supervision, Validation, Visualization, Writing, Review & Editing.

Corresponding author

Correspondence to Alejandro Aragón-Gutiérrez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1801 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aragón-Gutiérrez, A., Muñoz-Gimena, P.F., Gallur, M. et al. Melt-Extruded Home Compostable Films Based On Blends Of Thermoplastic Gliadins And Poly(ε-Caprolactone) Intended For Food Packaging Applications. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03163-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03163-8

Keywords

Navigation