Skip to main content
Log in

Application of Poly(Glycerol Itaconic Acid) (PGIt) and Poly(ɛ-caprolactone) Diol (PCL-diol) as Macro Crosslinkers Containing Cloisite Na+ to Application in Tissue Engineering

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Biomaterials are a crucial issue in the field of tissue engineering. Two types of polymeric biomaterials, such as Poly(glycerol Itaconic acid) (PGIt) and Poly(ɛ-caprolactone) diol (PCL-diol), were synthesized by polycondensation and ring opening polymerization (ROP) respectively. The PCL-diol was selected as a minor phase with 30 and 50 wt%, and Closite-Na + was selected as the nanophase with a constant amount of 5 wt%. Molecular structures PGIt and PCL-diol were analyzed by FTIR, 1H-NMR, and GPC techniques. Microstructures showing the presence of PCL-diol in the PGIt have not created compatible morphologies, albeit the presence of clay nanoparticles has helped to achieve the proper morphologies. Low angle XRD showed exfoliated, and intercalated morphologies can be predicted to pure PGIt and PGIt70PCLdiol30Clay5 samples. Mechanical analysis showed that Young’s modulus and elongation at the break of PGIt50PCLdiol50Clay5 and PGIt100 samples were higher than other samples. DMTA analysis showed that adding PCL-diol into the PGIt increased glass transition temperature (Tg) and storage modulus at 37 °C. The master curve of the studied samples was prepared by the WLF equation at body temperature. Hydrocatalytical degradation, contact angles, and MTT analysis showed that all samples behave well in biological conditions. Cell adhesion, Dapi, and Alizarin red analysis were carried out on the selected samples, and their results showed that the presence of PCL-diol and Clay into the PGIt has improved the biological behavior of the sample and PGIt50PCLdiol50Clay5 shows just behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen F-M, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168. https://doi.org/10.1016/j.progpolymsci.2015.02.004

    Article  PubMed  CAS  Google Scholar 

  2. Peppas NA, Langer R (1994) New challenges in biomaterials. Science 263:1715–1720. https://doi.org/10.1126/science.8134835

    Article  PubMed  CAS  Google Scholar 

  3. Kim B-S, Baez CE, Atala A (2000) Biomaterials for tissue engineering. World J Urol 18:2–9. https://doi.org/10.1007/s003450050002

    Article  PubMed  CAS  Google Scholar 

  4. Tang Y, Liu S, Deng Y et al (2021) An improved method for soft tissue modeling. Biomed Signal Process Control 65:102367. https://doi.org/10.1016/j.bspc.2020.102367

    Article  Google Scholar 

  5. Siyu Lu, Liu S (2023) Soft tissue feature tracking based on deep matching network. Comput Model Eng Sci 136:363–379. https://doi.org/10.32604/cmes.2023.025217

    Article  Google Scholar 

  6. Karp JM, Langer R (2007) Development and therapeutic applications of advanced biomaterials. Curr Opin Biotechnol 18:454–459. https://doi.org/10.1016/j.copbio.2007.09.008

    Article  PubMed  CAS  Google Scholar 

  7. Kohane DS, Langer R (2008) Polymeric biomaterials in tissue engineering. Pediatr Res 63:487–491. https://doi.org/10.1203/01.pdr.0000305937.26105.e7

    Article  PubMed  CAS  Google Scholar 

  8. Tibbitt MW, Langer R (2017) Living biomaterials. Acc Chem Res 50:508–513. https://doi.org/10.1021/acs.accounts.6b00499

    Article  PubMed  CAS  Google Scholar 

  9. Chen D, Wang Q, Li Y et al (2020) A general linear free energy relationship for predicting partition coefficients of neutral organic compounds. Chemosphere 247:125869. https://doi.org/10.1016/j.chemosphere.2020.125869

    Article  PubMed  CAS  Google Scholar 

  10. Xiao Y, Gong W, Zhao M et al (2023) Surface-engineered prussian blue nanozymes as artificial receptors for universal pattern recognition of metal ions and proteins. Sens Actuators B Chem 390:134006. https://doi.org/10.1016/j.snb.2023.134006

    Article  CAS  Google Scholar 

  11. Lu J, Chen Y, Ding M et al (2022) A 4arm-PEG macromolecule crosslinked chitosan hydrogels as antibacterial wound dressing. Carbohydr Polym 277:118871. https://doi.org/10.1016/j.carbpol.2021.118871

    Article  PubMed  CAS  Google Scholar 

  12. Xia J, Li Y, He C et al (2023) Synthesis and biological activities of oxazolidinone pleuromutilin derivatives as a potent anti-MRSA agent. ACS Infect Dis 9:1711–1729. https://doi.org/10.1021/acsinfecdis.3c00162

    Article  PubMed  CAS  Google Scholar 

  13. Zhang X, Li C, Zhou Z et al (2023) Vegetable oil-based nanolubricants in machining: from physicochemical properties to application. Chin J Mech Eng 36:76. https://doi.org/10.1186/s10033-023-00895-5

    Article  CAS  Google Scholar 

  14. Yousefi Talouki P, Tamimi R, Zamanlui Benisi S et al (2022) Polyglycerol sebacate (PGS)-based composite and nanocomposites: properties and applications. Int J Polym Mater Polym Biomater. https://doi.org/10.1080/00914037.2022.2097681

    Article  Google Scholar 

  15. Gadomska-Gajadhur A, Wrzecionek M, Matyszczak G et al (2018) Optimization of poly(glycerol sebacate) synthesis for biomedical purposes with the design of experiments. Org Process Res Dev 22:1793–1800. https://doi.org/10.1021/acs.oprd.8b00306

    Article  CAS  Google Scholar 

  16. Liu Q, Tian M, Ding T et al (2007) Preparation and characterization of a thermoplastic poly(glycerol sebacate) elastomer by two-step method. J Appl Polym Sci. https://doi.org/10.1002/app.24394

    Article  Google Scholar 

  17. Seyfikar S, Asgharnejad-laskoukalayeh M, Jafari SH et al (2022) Introducing a new approach to preparing bionanocomposite sponges based on poly(glycerol sebacate urethane) (PGSU) with great interconnectivity and high hydrophilicity properties for application in tissue engineering. Eur Polym J 173:111239. https://doi.org/10.1016/J.EURPOLYMJ.2022.111239

    Article  CAS  Google Scholar 

  18. Rostamian M, Kalaee MR, Dehkordi SR et al (2020) Design and characterization of poly(glycerol-sebacate)-co-poly(caprolactone) (PGS-co-PCL) and its nanocomposites as novel biomaterials: The promising candidate for soft tissue engineering. Eur Polym J 138:109985. https://doi.org/10.1016/j.eurpolymj.2020.109985

    Article  CAS  Google Scholar 

  19. Davoodi B, Goodarzi V, Hosseini H et al (2022) (2022) Design and manufacturing a tubular structures based on poly(ɛ-caprolactone)/poly(glycerol-sebacic acid) biodegradable nanocomposite blends: suggested for applications in the nervous, vascular and renal tissue engineering. J Polym Res 29:1–15. https://doi.org/10.1007/S10965-021-02881-8

    Article  Google Scholar 

  20. Sun ZJ, Chen C, Sun MZ et al (2009) The application of poly (glycerol-sebacate) as biodegradable drug carrier. Biomaterials 30:5209–5214. https://doi.org/10.1016/j.biomaterials.2009.06.007

    Article  PubMed  CAS  Google Scholar 

  21. Jia Y, Wang W, Zhou X et al (2016) Synthesis and characterization of poly(glycerol sebacate)-based elastomeric copolyesters for tissue engineering applications. Polym Chem. https://doi.org/10.1039/c5py01993a

    Article  Google Scholar 

  22. Lin D, Cai B, Wang L et al (2020) A viscoelastic PEGylated poly(glycerol sebacate)-based bilayer scaffold for cartilage regeneration in full-thickness osteochondral defect. Biomaterials 253:120095. https://doi.org/10.1016/j.biomaterials.2020.120095

    Article  PubMed  CAS  Google Scholar 

  23. Wang Y, Wu H, Wang Z et al (2019) Optimized synthesis of biodegradable elastomer PEGylated Poly(glycerol sebacate) and their biomedical application. Polymers. https://doi.org/10.3390/polym11060965

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aghajan MH, Panahi-Sarmad M, Alikarami N et al (2020) Using solvent-free approach for preparing innovative biopolymer nanocomposites based on PGS/gelatin. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2020.109720

    Article  Google Scholar 

  25. Golbaten-Mofrad H, Salehi MH, Jafari SH et al (2022) Preparation and properties investigation of biodegradable poly (glycerol sebacate-co-gelatin) containing nanoclay and graphene oxide for soft tissue engineering applications. J Biomed Mater Res Part B Appl Biomater 110:2241–2257. https://doi.org/10.1002/jbm.b.35073

    Article  CAS  Google Scholar 

  26. Yoon S, Chen B (2018) Elastomeric and pH-responsive hydrogels based on direct crosslinking of the poly(glycerol sebacate) pre-polymer and gelatin. Polym Chem 9:3727–3740. https://doi.org/10.1039/c8py00544c

    Article  CAS  Google Scholar 

  27. Talouki PY, Tackallou SH, Shojaei S et al (2023) The role of three-dimensional scaffolds based on polyglycerol sebacate/polycaprolactone/gelatin in the presence of Nanohydroxyapatite in promoting chondrogenic differentiation of human adipose-derived mesenchymal stem cells. Biol Proced Online 25:9. https://doi.org/10.1186/s12575-023-00197-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Farjaminejad S, Shojaei S, Goodarzi V et al (2021) Tuning properties of bio-rubbers and its nanocomposites with addition of succinic acid and ɛ-caprolactone monomers to poly(glycerol sebacic acid) as main platform for application in tissue engineering. Eur Polym J 159:110711. https://doi.org/10.1016/j.eurpolymj.2021.110711

    Article  CAS  Google Scholar 

  29. Sotoudeh A, Darbemamieh G, Goodarzi V et al (2021) Tissue engineering needs new biomaterials: poly(xylitol-dodecanedioic acid)–co-polylactic acid (PXDDA-co-PLA) and its nanocomposites. Eur Polym J 152:110469. https://doi.org/10.1016/j.eurpolymj.2021.110469

    Article  CAS  Google Scholar 

  30. Dai J, Ma S, Wu Y et al (2015) High bio-based content waterborne UV-curable coatings with excellent adhesion and flexibility. Prog Org Coat 87:197–203. https://doi.org/10.1016/j.porgcoat.2015.05.030

    Article  CAS  Google Scholar 

  31. Ma S, Liu X, Jiang Y et al (2013) Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chem 15:245–254. https://doi.org/10.1039/C2GC36715G

    Article  CAS  Google Scholar 

  32. Yin G-Z, Díaz Palencia JL, Wang D-Y (2021) Fully bio-based Poly (Glycerol-Itaconic acid) as supporter for PEG based form stable phase change materials. Compos Commun 27:100893. https://doi.org/10.1016/j.coco.2021.100893

    Article  Google Scholar 

  33. Yin G-Z, Yang X-M, Hobson J et al (2022) Bio-based poly (glycerol-itaconic acid)/PEG/APP as form stable and flame-retardant phase change materials. Compos Commun 30:101057. https://doi.org/10.1016/j.coco.2022.101057

    Article  Google Scholar 

  34. Ghaffari-Bohlouli P, Golbaten-Mofrad H, Najmoddin N et al (2023) Reinforced conductive polyester based on itaconic acids, glycerol and polypyrrole with potential for electroconductive tissue restoration. Synth Met 293:117238. https://doi.org/10.1016/j.synthmet.2022.117238

    Article  CAS  Google Scholar 

  35. Kong M, Yang M, Li R et al (2023) Graphene-based flexible wearable sensors: mechanisms, challenges, and future directions. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-023-12007-7

    Article  Google Scholar 

  36. Wang Z, Dai L, Yao J et al (2021) Enhanced adsorption and reduction performance of nitrate by Fe–Pd–Fe3O4 embedded multi-walled carbon nanotubes. Chemosphere 281:130718. https://doi.org/10.1016/j.chemosphere.2021.130718

    Article  PubMed  CAS  Google Scholar 

  37. Wang Z, Chen C, Liu H et al (2020) Enhanced denitrification performance of Alcaligenes sp. TB by Pd stimulating to produce membrane adaptation mechanism coupled with nanoscale zero-valent iron. Sci Total Environ 708:135063. https://doi.org/10.1016/j.scitotenv.2019.135063

    Article  PubMed  CAS  Google Scholar 

  38. Tirgar M, Hosseini H, Jafari M et al (2021) Introducing a flexible drug delivery system based on poly(Glycerol sebacate-Urethane) (PGS-U) and its nanocomposite: potential application in the prevention and treatment of oral diseases. J Biomater Sci Polym Ed. https://doi.org/10.1080/09205063.2021.1992588

    Article  PubMed  Google Scholar 

  39. Hosseini Chenani F, Rezaei VF, Fakhri V et al (2021) Green synthesis and characterization of poly(glycerol-azelaic acid) and its nanocomposites for applications in regenerative medicine. J Appl Polym Sci 138:50563. https://doi.org/10.1002/app.50563

    Article  CAS  Google Scholar 

  40. Golbaten-Mofrad H, Seyfi Sahzabi A, Seyfikar S et al (2021) Facile template preparation of novel electroactive scaffold composed of polypyrrole-coated poly(glycerol-sebacate-urethane) for tissue engineering applications. Eur Polym J 159:110749. https://doi.org/10.1016/j.eurpolymj.2021.110749

    Article  CAS  Google Scholar 

  41. Mahdavi R, Goodarzi V, Ali Khonakdar H et al (2018) Experimental analysis and prediction of viscoelastic creep properties of PP/EVA/LDH nanocomposites using master curves based on time–temperature superposition. J Appl Polym Sci 135:46725. https://doi.org/10.1002/app.46725

    Article  CAS  Google Scholar 

  42. Stock UA, Vacanti JP (2001) Tissue engineering: current state and prospects. Annu Rev Med 52:443–451. https://doi.org/10.1146/annurev.med.52.1.443

    Article  PubMed  CAS  Google Scholar 

  43. Patel A, Gaharwar AK, Iviglia G et al (2013) Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers. Biomaterials 34:3970–3983. https://doi.org/10.1016/j.biomaterials.2013.01.045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Trinca RB, Westin CB, da Silva JAF, Moraes ÂM (2017) Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. Eur Polym J 88:161–170. https://doi.org/10.1016/j.eurpolymj.2017.01.021

    Article  CAS  Google Scholar 

Download references

Funding

This study received no financial support.

Author information

Authors and Affiliations

Authors

Contributions

RM: Investigation, Visualization, Resources, Writing original draft. PZ: Conceptualization, Supervision, Project administration, Review &; Editing. VG:Conceptualization, Supervision, Project administration, Review &; Editing.

Corresponding authors

Correspondence to Payam Zahedi or Vahabodin Goodarzi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 302 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, R., Zahedi, P. & Goodarzi, V. Application of Poly(Glycerol Itaconic Acid) (PGIt) and Poly(ɛ-caprolactone) Diol (PCL-diol) as Macro Crosslinkers Containing Cloisite Na+ to Application in Tissue Engineering. J Polym Environ (2024). https://doi.org/10.1007/s10924-023-03162-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-023-03162-9

Keywords

Navigation